View Chapter

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm-Exos

Author  Massimo Bergamasco

Video ID : 148

The video details the Arm-Exos and, in particular, its capability for tracking the operator's motions and for rendering the contact forces in a simple, demonstrative, virtual environment.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Robot being used to carry a vacuum-cleaner head at Fukishima powerplant

Author  James P. Trevelyan

Video ID : 581

A video apparently provided by IEEE Spectrum showing views of a robot performing simple vacuum-cleaning tasks.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved bipedal walking

Author  Phil Husbands

Video ID : 374

The video shows stages of evolution of bipedal walking in a simulated, bipedal robot using realistic physics (from the work by Torsten Reil and originating at Sussex University). This was the first example of successfully- evolved bipedal gaits produced in a physics-engine-based simulation. The problem is inherently dynamically unstable, thus making it an interesting challenge.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM 3

Author  Cyrill Stachniss

Video ID : 451

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap.46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robot. Res. 31(11), 1219-1230 (2012).

Chapter 57 — Robotics in Construction

Kamel S. Saidi, Thomas Bock and Christos Georgoulas

This chapter introduces various construction automation concepts that have been developed over the past few decades and presents examples of construction robots that are in current use (as of 2006) and/or in various stages of research and development. Section 57.1 presents an overview of the construction industry, which includes descriptions of the industry, the types of construction, and the typical construction project. The industry overview also discusses the concept of automation versus robotics in construction and breaks down the concept of robotics in construction into several levels of autonomy as well as other categories. Section 57.2 discusses some of the offsite applications of robotics in construction (such as for prefabrication), while Sect. 57.3 discusses the use of robots that perform a single task at the construction site. Section 57.4 introduces the concept of an integrated robotized construction site in which multiple robots/machines collaborate to build an entire structure. Section 57.5 discusses unsolved technical problems in construction robotics, which include interoperability, connection systems, tolerances, and power and communications. Finally, Sect. 57.6 discusses future directions in construction robotics and Sect. 57.7 gives some conclusions and suggests resources for further reading.

Obayashi ACBS (Automatic Constructions Building System)

Author  Thomas Bock

Video ID : 272

In the Obayashi ACBS (Automatic Constructions Building System) (Figure 57.29), once a story has been finished, the whole support structure, which rests on four columns, is pushed upwards by hydraulic presses to the next story over a 1.5 h period. Fully extended, the support structure is 25 m high; retracted it measures 4.5 m. Once everything has been moved up, work starts on the next story. By constructing the topmost story of the high-rise building as the roof at the beginning of the building process, the site is closed off in all directions, considerably reducing the effect of the weather and any damage it might cause.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Binary manipulator navigating an obstacle

Author  Greg Chirikjian

Video ID : 163

Simulation of Greg Chirikjian's binary manipulator navigating an obstacle.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

BigDog - Applications of hydraulic actuators

Author  Boston Dynamics

Video ID : 645

Fig. 4.22a Applications of hydraulic actuators to robot: BigDog (Boston Dynamics).

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Dexmart Hand

Author  Claudio Melchiorri

Video ID : 767

Grasp and manipulation tasks executed by the Dexmart Hand, an anthropomorphic robot hand developed within an European research activity. Detailed aspects of the "twisted-spring" actuation principle are demonstrated.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Intrinsically elastic robots: The key to human like performance (Best Video Award)

Author  Sami Haddadin, Felix Huber, Kai Krieger, Roman Weitschat, Alin Albu-Schäffer, Sebastian Wolf, Werner Friedl, Markus Grebenstein, Florian Petit, Jens Reinecke, Roberto Lampariello

Video ID : 475

The advantages of intrinsically elastic robots on their performance are shown by the examples of the DLR LWR III and the DLR Hand Arm System.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning compliant motion from human demonstration

Author  Aude Billard

Video ID : 478

This video illustrates how one can teach a robot to display the right amount of stiffness to perform a task successfully. Decrease in stiffness is demonstrated by shaking the robot, while increase in stiffness is conveyed by pressing on the robot's arm (pressure being measured through tactile sensors along the robot's arm). Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .