View Chapter

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Mental-state inference to support human-robot collaboration

Author  Cynthia Breazeal

Video ID : 563

In this video, the Leonardo robot infers mental states from the observable behavior of two human collaborators in order to assist them in achieving their respective goals. The robot engages in a simulation-theory-inspired approach to make these inferences and to plan the appropriate actions to achieve the task goals. Each person wants a different food item (chips or cookies), locked in one of two larger boxes. The robot can operate a remote control interface to open two smaller boxes, one containing chips and the other cookies. The task is inspired by the Sally-Anne false-belief task, where the humans have diverging beliefs caused by a manipulation witnessed by only one of the participants. The robot must keep track of its own beliefs, in addition to inferring the beliefs of the human collaborators, as well as infer their respective goals, to offer the correct assistance.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Footstep planning modeled as a whole-body, inverse-kinematic problem

Author  Eiichi Yoshida

Video ID : 596

An augmented-robot structure was introduced as "virtual" planar links attached to a foot that represents footsteps. This modeling makes it possible to solve the footstep planning as a problem of inverse kinematics, and also to determine the final whole-body configuration. After planning the footsteps, the dynamically-stable, whole-body motion including walking can be computed by using a dynamic pattern generator.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Sparse pose adjustment

Author  Kurt Konolige

Video ID : 447

This video shows an illustration of pose-graph SLAM optimization, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using sparse pose adjustment. Reference: K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent: Sparse pose adjustment for 2-D mapping, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Taipei (2010).

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Tactile exploration and modeling using shape primitives

Author  Francesco Mazzini

Video ID : 76

This video shows a robot performing tactile exploration and modeling of a lab-constructed scene that was designed to be similar to those found in interventions for underwater oil spills (leaking pipe). Representing the scene with geometric primitives enables the surface to be described using only sparse tactile data from joint encoders. The robot's movements are chosen to maximize the expected increase in knowledge about the scene.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Hexapod robot Ambler

Author  William (Red) L. Whittaker

Video ID : 517

A hexapod walking robot developed by researchers at Carnegie Mellon University.

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

6-DOF object localization via touch

Author  Anna Petrovskaya

Video ID : 721

The PUMA robot arm performs 6-DOF localization of an object (i.e., a cash register) via touch starting with global uncertainty. After each contact, the robot analyzes the resulting belief about the object pose. If the uncertainty of the belief is too large, the robot continues to probe the object. Once, the uncertainty is small enough, the robot is able to push buttons and manipulate the drawer based on its knowledge of the object pose and prior knowledge of the object model. A prior 3-D mesh model of the object was constructed by touching the object with the robot's end-effector.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved bipedal walking

Author  Phil Husbands

Video ID : 374

The video shows stages of evolution of bipedal walking in a simulated, bipedal robot using realistic physics (from the work by Torsten Reil and originating at Sussex University). This was the first example of successfully- evolved bipedal gaits produced in a physics-engine-based simulation. The problem is inherently dynamically unstable, thus making it an interesting challenge.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Handling of a single object by multiple mobile robots based on caster-like dynamics

Author  Yasuhisa Hirata et al.

Video ID : 368

When multiple robots manipulate an object, positional errors due to wheel slippage are the most common problems. To handle this uncertainty, each robot is controlled as if it has caster dynamics. The offset between the friction and wheel axis guide the planning of each robot. This algorithm is general enough to work with robots avoiding obstacles as the object is being manipulated. It can also be extended to 3-D space so that objects can be manipulated in the air by multiple robots.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Scout robot for outdoor surveillance

Author  Nikos Papanikolopoulos

Video ID : 681

The Scout robot has been developed at the University of Minnesota in partnership with MTS, Honeywell, and ATC. The Scouts are specialized robots that carry out low-level, usually parallel tasks to meet the mission objectives. Scouts can include simple sensory units or units with locomotion, tools, or other specializations. All Scouts have a similar form factor to enable delivery of the ranger by a uniform mechanism. The Scout has a body roughly 11 cm long and 4 cm in diameter (the special foam wheels can expand to 5 cm in diameter). This body fits snugly inside a protective covering called a Sabot which absorbs much of the impact during the launch and enables the Scout to break through a glass window, land safely, and be ready to begin its mission.

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Experiments of spatial impedance control

Author  Fabrizio Caccavale, Ciro Natale, Bruno Siciliano, Luigi Villani

Video ID : 686

The videod results of an experimental study of impedance control schemes for a robot manipulator in contact with the environment are presented. Six-DOF interaction tasks are considered that require the implementation of a spatial impedance described in terms of both its translational and its rotational parts. Two representations of end-effector orientation are adopted, namely, Euler angles and quaternions, and the implications for the choice of different orientation displacements are discussed. The controllers are tested on an industrial robot with open-control architecture in a number of case studies. This work was published in A. Casals, A.T. de Almeida (Eds.): Experimental Robotics V, Lect. Note. Control Inform. Sci. 232 (Springer, Berlin, Heidelberg 1998)