View Chapter

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Exploitation of social cues to speed up learning

Author  Sylvain Calinon, Aude Billard

Video ID : 106

Use of social cues to speed up the imitation-learning process, with gazing and pointing information to select the objects relevant for the task. Reference: S. Calinon, A.G. Billard: Teaching a humanoid robot to recognize and reproduce social cues, Proc. IEEE Int. Symp. Robot Human Interactive Communication (Ro-Man), Hatfield (2006), pp. 346–351; URL: http://lasa.epfl.ch/research/control_automation/interaction/social/index.php .

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Gaze and gesture cues for robots

Author  Bilge Mutlu

Video ID : 128

In human-robot communication, nonverbal cues like gaze and gesture can be a source of important information for starting and maintaining interaction. Gaze, for example, can tell a person about what the robot is attending to, its mental state, and its role in a conversation. Researchers are studying and developing models of nonverbal cues in human-robot interaction to enable more successful collaboration between robots and humans in a variety of domains, including education.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Self-assembly and morphology control in a swarm-bot

Author  Rehan O'Grady, Andres Lyhne Christensen, Marco Dorigo

Video ID : 195

This video shows the capability of the swarm-bot mobile robot platform to self-assemble into a specific connected morphology. Each S-bot opens a connection slot by lighting its blue and green LEDs, which indicates the desired angle and the specific place for grasping by another S-bot. The video shows four different morphologies - star, line, arrow, and dense.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Configuration space control of KUKA Lightweight Robot LWR with EXARM Exoskeleton

Author  Telerobotics Lab

Video ID : 817

This video shows some advanced inverse kinematics mapping that enables the control of a redundant manipulator (KUKA LWR) by means of Cartesian location and geometric correspondence to the human arm. Thereby the null-space of the robot manipulator can be exploited to enable very intuitive operations. Joint limits and singularities are avoided, as well, by optimized mounting of the robot and the hand.

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

Linear-to-rotary motion converters for three-dimensional microscopy

Author  Lixin Dong

Video ID : 492

This video shows the application of a linear-to-rotary motion converter in 3-D imaging using a scanning electron microscope. The motion converter consists of a SiGe/Si dual-chirality helical nanobelt (DCHNB). The experiment was done using nanorobotic manipulation. Analytical and experimental investigation shows that the motion conversion has excellent linearity for small deflections. The stiffness (0.033 N/m) is much smaller than that of bottom-up synthesized helical nanostructures, which is promising for high-resolution force measurement in nanoelectromechanical systems (NEMS). The ultracompact size makes it also possible for DCHNBs to serve as rotary stages for creating 3-D scanning probe microscopes or microgoniometers.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D3 assembly with sensitive compliant robot arms

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 382

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Work cell description and configuration (00:29); Chapter 3: Selection of the job (00:50); Chapter 4: Preparation step (01:09); Chapter 5: Riveting (01:44); Chapter 6: Error handling with automatic solution (02:17); Chapter 7: Finalise workflow (02:34); Chapter 8: Statement (03:09); Chapter 9: Outro (03:40); Chapter 10: The Consortium (03:54). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d3.html

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Six-legged, walking, underwater robot Crabster

Author  Hyun-Taek Choi

Video ID : 793

This video shows basic function testing of the six-legged, underwater robot named Crabster developed by KRISO (Korea Research Institute of Ships and Ocean Engineering).

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

A swarm-bot of eight robots displaying coordinated motion

Author  Stefano Nolfi, Gianluca Baldassarre, Vito Trianni, Francesco Mondada, Marco Dorigo

Video ID : 115

Each robot is provided with an independent neural controller which determines the desired speed of the two wheels on the basis of the traction force caused by the movements of the other robots. The evolved robots are able to display coordinated-motion capability, independent from the way in which they are assembled, as well as to coordinate in carrying heavy objects.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Modsnake climbing a tree

Author  Howie Choset

Video ID : 168

The CMU Modsnake climbing a tree and surveying an area from this high vantage point.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Human-robot interaction planning

Author  Sven Parusel, Hannes Widmoser, Saskia Golz, Tobias Ende, Nico Blodow, Matteo Saveriano, Kai Krieger, Alexis Maldonado, Ingo Kresse, Roman Weitschat, Dongheui Lee, Michael Beetz, Sami Haddadin

Video ID : 616

The video presents the main aspects that have to be taken into consideration for joint human-robot assembly. These are: i) planning and appropriately distributing the tasks between human, robot, and collaboration; ii) a suitable interface between human and robot by visual and haptic gestures; iii) compliant and sensitive robot control in delivery, storage, hand-over, and assembly of parts; iv) collision detection and distinguishing from intended contacts during collaboration. The overall concept is presented for the exemplary assembly of a toy-train-track. (AAAI 2014, Video Competition)