View Chapter

Chapter 45 — World Modeling

Wolfram Burgard, Martial Hebert and Maren Bennewitz

In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topologicalmaps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-basedmaps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.

Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

OctoMap visualization

Author  Maren Bennewitz, Wolfram Burgard, Armin Hornung, Cyrill Stachniss, Kai Wurm

Video ID : 79

This video shows the Freiburg Computer Science campus in a 3-D OctoMap. Note that free space is also encoded, although not shown in the video. The map covers an area of 292 x 167 x 28 m^3 and requires only 130 MB in memory at 20 cm resolution.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Probabilistic encoding of motion in a subspace of reduced dimensionality

Author  Keith Grochow, Steven Martin, Aaron Hertzmann, Zoran Popovic

Video ID : 102

Probabilistic encoding of motion in a subspace of reduced dimensionality. Reference: K. Grochow, S. L. Martin, A. Hertzmann, Z. Popovic: Style-based inverse kinematics, Proc. ACM Int. Conf. Comput. Graphics Interact. Tech. (SIGGRAPH), 522–531 (2004); URL: http://grail.cs.washington.edu/projects/styleik/ .

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

DALMATINO

Author  James P. Trevelyan

Video ID : 575

This is another smaller, remotely-operated, mine-clearance vehicle similar in principle to the BOZENA machine described in Video 574. This video clearly shows the vegetation removal capability of these machines.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Ichthus

Author  Gi-Hun Yang, Kyung-Sik Kim, Sang-Hyo Lee, Chullhee Cho, Youngsun Ryuh

Video ID : 432

This video study captures a stage in the development of a robotic fish called ‘Ichthus’ which can be used in water-quality sensing systems. The robotic fish ‘Ichthus’ has a 3-DOF serial link-mechanism for its propulsion, which was developed at KITECH.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Parallel 5R robot

Author  Ilian Bonev

Video ID : 46

This video demonstrates a planar parallel 5R robot that is designed to fully exploit its workspace.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm Light Exoskeleton (ALEx)

Author  Massimo Bergamasco

Video ID : 146

The video shows the Arm Light Exoskeleton (ALEx) and, in particular, its capability for tracking the operator's movements.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Smart Seeder: An autonomous high-accuracy, seed planter for broad-acre crops

Author  Jay Katupitiya

Video ID : 131

This video shows highly accurate (within 2 cm) guidance of a tractor and an implement. The tractor is speed-controlled and follows a specified path very accurately. The implement is a seed planter which also follows the same path with the same accuracy. The implement has its own power unit. Its wheels are steerable and driven under force control as demanded by the force sensor at the hitch point. This relieves the tractor from having to pull the implement with full force, and hence it can be a smaller machine. Highly precise planting and path- following repeatability enables plant-level care which significantly reduce the chemical use, hence reducing adverse environmental effects and cost.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved group coordination

Author  Phil Husbands

Video ID : 376

Identical evolved robots are required to coordinate by coming together and moving off in the same direction. No roles are pre-assigned. The robots must evolve to coordinate such that one robot takes on the role of leader and the others follow. Only minimal sensing is available (proximity IR sensing) and no dedicated communication channels. The robot neural-network controllers are evolved using a minimal simualtion and, as can be seen, these successfully transfer to reality. Work by Matt Quinn, Giles Mayley, Linc Smith and Phil Husbands at Sussex University.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Autonomous orchard tractors

Author  John Reid

Video ID : 26

Mowing and spraying are two common tasks in orchard environments that require the use of tractors. These tasks take significant time and resources and spraying, in particular, can be dangerous for the operators, all of which suggest benefits from their automation. This video shows two John Deere tractors driving autonomously in an orange orchard. The first tractor is performing a spraying task, using the perception sensors for obstacle detection and to control the amount of spray applied to the trees, such that each tree receives only the minimum amount of chemicals necessary for its size. The second tractor is performing a mowing task, keeping the grass short to improve access to the orchard and reduce competition for resouces with the trees.

Chapter 37 — Contact Modeling and Manipulation

Imin Kao, Kevin M. Lynch and Joel W. Burdick

Robotic manipulators use contact forces to grasp and manipulate objects in their environments. Fixtures rely on contacts to immobilize workpieces. Mobile robots and humanoids use wheels or feet to generate the contact forces that allow them to locomote. Modeling of the contact interface, therefore, is fundamental to analysis, design, planning, and control of many robotic tasks.

This chapter presents an overview of the modeling of contact interfaces, with a particular focus on their use in manipulation tasks, including graspless or nonprehensile manipulation modes such as pushing. Analysis and design of grasps and fixtures also depends on contact modeling, and these are discussed in more detail in Chap. 38. Sections 37.2–37.5 focus on rigid-body models of contact. Section 37.2 describes the kinematic constraints caused by contact, and Sect. 37.3 describes the contact forces that may arise with Coulomb friction. Section 37.4 provides examples of analysis of multicontact manipulation tasks with rigid bodies and Coulomb friction. Section 37.5 extends the analysis to manipulation by pushing. Section 37.6 introduces modeling of contact interfaces, kinematic duality, and pressure distribution and soft contact interface. Section 37.7 describes the concept of the friction limit surface and illustrates it with an example demonstrating the construction of a limit surface for a soft contact. Finally, Sect. 37.8 discusses how these more accurate models can be used in fixture analysis and design.

Horizontal transport by 2-DOF vibration

Author  Kevin M. Lynch, Paul Umbanhowar

Video ID : 803

This video demonstrates the use of vertical and horizontal vibration of a supporting bar to cause the object on top to slide one way or the other. Upward acceleration of the bar increases the normal force, thereby increasing the tangential friction force during sliding. With periodic vibration, the object achieves a limit-cycle motion. By choosing the phasing of the vertical and horizontal vibration, the net motion during a limit cycle can be to the left or right. Video shown at 1/20 actual speed. This video is related to the example shown in Fig. 37.9 in Chap. 37.4.3 of the Springer Handbook of Robotics, 2nd ed (2016).