View Chapter

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Vergence sonar

Author  Roman Kuc

Video ID : 301

Two conventional Polaroid sonars are oriented away from the sonar axis by a vergence angle of eight degrees and excited simultaneously every 100 ms. Simple logic determines which sonar detects the echo first - indicated by the red LEDs - and when the echoes arrive within a 3 µs window - indicated by the center yellow LED. The video indicates echoes from the ceiling located at 2 m range. The vergence sonar can determine normal incidence within 0.5 degree over a usable beam width of 46 degrees. Reference: R. Kuc: Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification, IEEE Trans. Biomed. Eng. 49(10), 1173-1180 (2002).

Chapter 68 — Human Motion Reconstruction

Katsu Yamane and Wataru Takano

This chapter presents a set of techniques for reconstructing and understanding human motions measured using current motion capture technologies. We first review modeling and computation techniques for obtaining motion and force information from human motion data (Sect. 68.2). Here we show that kinematics and dynamics algorithms for articulated rigid bodies can be applied to human motion data processing, with help from models based on knowledge in anatomy and physiology. We then describe methods for analyzing human motions so that robots can segment and categorize different behaviors and use them as the basis for human motion understanding and communication (Sect. 68.3). These methods are based on statistical techniques widely used in linguistics. The two fields share the common goal of converting continuous and noisy signal to discrete symbols, and therefore it is natural to apply similar techniques. Finally, we introduce some application examples of human motion and models ranging from simulated human control to humanoid robot motion synthesis.

Converting human motion to sentences

Author  Katsu Yamane

Video ID : 766

This video shows an example of converting human motion sequences to descriptive sentences.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Side-looking TOF sonar simulation

Author  Roman Kuc

Video ID : 302

When a sonar is oriented 45 degrees to the side of the mobile-robot travel direction, retro-reflectors - posts and corners - produce TOF values which form a hyperbola. The hyperbola can be processed to determine the retro-reflector location.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobot video coffee break

Author  Martin Haegele

Video ID : 261

Coffee break: Tom and Michael, two stressed workers of an SME, dream of a robot helping them in their daily routine. One idea inspires the next ... until their ruminations advance to novel work environments and new and different types of robots, topics to be explored in the final project. © Copyright This video is copyrighted property of the SMErobot consortium. Any use of the video other than for private, non-commercial viewing purposes is strictly prohibited. http://www.smerobot.org/

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Experience-based learning of high-level task representations: Reproduction (2)

Author  Monica Nicolescu

Video ID : 31

This is a video recorded in early 2000s, showing a Pioneer robot learning to visit a number of targets in a certain order - the robot execution stage. The robot training stage is also shown in a related video in this chapter. References: 1. M. Nicolescu, M.J. Mataric: Experience-based learning of task representations from human-robot interaction, Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. , Banff (2001), pp. 463-468; 2. M. Nicolescu, M.J. Mataric: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybernet. A31(5), 419-430 (2001)

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

A high-speed hand

Author  Ishikawa Komuro Lab

Video ID : 755

Ishikawa Komuro Lab's high-speed robot hand performing impressive acts of dexterity and skillful manipulation.

Chapter 37 — Contact Modeling and Manipulation

Imin Kao, Kevin M. Lynch and Joel W. Burdick

Robotic manipulators use contact forces to grasp and manipulate objects in their environments. Fixtures rely on contacts to immobilize workpieces. Mobile robots and humanoids use wheels or feet to generate the contact forces that allow them to locomote. Modeling of the contact interface, therefore, is fundamental to analysis, design, planning, and control of many robotic tasks.

This chapter presents an overview of the modeling of contact interfaces, with a particular focus on their use in manipulation tasks, including graspless or nonprehensile manipulation modes such as pushing. Analysis and design of grasps and fixtures also depends on contact modeling, and these are discussed in more detail in Chap. 38. Sections 37.2–37.5 focus on rigid-body models of contact. Section 37.2 describes the kinematic constraints caused by contact, and Sect. 37.3 describes the contact forces that may arise with Coulomb friction. Section 37.4 provides examples of analysis of multicontact manipulation tasks with rigid bodies and Coulomb friction. Section 37.5 extends the analysis to manipulation by pushing. Section 37.6 introduces modeling of contact interfaces, kinematic duality, and pressure distribution and soft contact interface. Section 37.7 describes the concept of the friction limit surface and illustrates it with an example demonstrating the construction of a limit surface for a soft contact. Finally, Sect. 37.8 discusses how these more accurate models can be used in fixture analysis and design.

Programmable velocity vector fields by 6-DOF vibration

Author  Tom Vose, Matt Turpin, Philip Dames, Paul Umbanhowar, Kevin M. Lynch

Video ID : 804

This video generalizes the idea of transporting parts using horizontal and vertical vibration shown in the previous video and illustrated in Fig. 37.9 in Chap. 37.4.3 of the Springer Handbook of Robotics, 2nd ed (2016). In this video, a rigid supporting plate is vibrated with an arbitrary periodic 6-DOF motion profile. This periodic vibration enables control of the normal forces and horizontal plate velocities as a function of the position on the plate, effectively creating programmable velocity vector fields induced by friction. This video demonstrates five such velocity fields in sequence, each created by a different periodic vibration of the plate.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM

Author  Cyrill Stachniss

Video ID : 449

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap. 46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robot. Res. 31(11), 1219--1230 (2012).

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

UBH2, University of Bologna Hand, ver. 2 (1992)

Author  Claudio Melchiorri

Video ID : 756

This hand, developed at the University of Bologna at the beginning of the 1990s, was the first to implement the "whole-hand-manipulation" capability. It was equipped with intrinsic tactile force/torque sensors in each phalange and in the palm.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

An autonomous cucumber harvester

Author  Elder J. van Henten, Jochen Hemming, Bart A.J. van Tuijl, J.G. Kornet, Jan Meuleman, Jan Bontsema, Erik A. van Os

Video ID : 308

The video demonstrates an autonomous cucumber harvester developed at Wageningen University and Research Centre, Wageningen, The Netherlands. The machine consists of a mobile platform which runs on rails, which are commonly used in greenhouses in The Netherlands for the purpose of internal transport, but they are also used as a hot- water heating system for the greenhouse. Harvesting requires functional steps such as the detection and localization of the fruit and assessment of its ripeness. In the case of the cucumber harvester, the different reflection properties in the near infrared spectrum are exploited to detect green cucumbers in the green environment. Whether the cucumber was ready for harvest was identified based on an estimation of its weight. Since cucumbers consist 95% of water, the weight estimation was achieved by estimating the volume of each fruit. Stereo-vision principles were then used to locate the fruits to be harvested in the 3-D environment. For that purpose, the camera was shifted 50 mm on a linear slide and two images of the same scene were taken and processed. A Mitsubishi RV-E2 manipulator was used to steer the gripper-cutter mechanism to the fruit and transport the harvested fruit back to a storage crate. Collision-free motion planning based on the A* algorithm was used to steer the manipulator during the harvesting operation. The cutter consisted of a parallel gripper that grabbed the peduncle of the fruit, i.e., the stem segment that connects the fruit to the main stem of the plant. Then the action of a suction cup immobilized the fruit in the gripper. A special thermal cutting device was used to separate the fruit from the plant. The high temperature of the cutting device also prevented the potential transport of viruses from one plant to the other during the harvesting process. For each successful cucumber harvested, this machine needed 65.2 s on average. The average success rate was 74.4%. It was found to be a great advantage that the system was able to perform several harvest attempts on a single cucumber from different harvest positions of the robot. This improved the success rate considerably. Since not all attempts were successful, a cycle time of 124 s per harvested cucumber was measured under practical circumstances.