View Chapter

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

HERMES, a humanoid experimental robot for mobile manipulation and exploration services

Author  Rainer Bischoff

Video ID : 783

Mobile robot HERMES grasps and releases a glass with tactile sensing using joint-angle, encoder values and motor currents. The robot can fill a glass with water from a bottle using vision. It can communicate with natural spoken language,and it can come to you to get your cup and take the cup to the kitchen, by planning a path and avoiding obstacles.

Free-floating autonomous underwater manipulation: Connector plug/unplug

Author  CIRS Universitat de Girona

Video ID : 789

Peg-in-hole demonstration performed autonomously with an underwater-vehicle manipulator system. The implementation is done through MoveIt!.

Adaptive synergies for a humanoid robot hand

Author  Centro di Ricerca Enrico Piaggio

Video ID : 658

We present the first implementation of the UNIPI-hand, a highly integrated prototype of an anthropomorphic hand that conciliates the idea of adaptive synergies with a human-form factor. The video validates the hand's versatility by showing grasp and manipulation actions on a variety of objects.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.


Author  Duncan W. Haldane, Kevin C. Peterson, Fernando L. Garcia Bermudez, Ronald S. Fearing

Video ID : 408

UC Berkeley's miniature robot VelociRoACH. It is the latest version of the RoACH series which can run at extremely higher speeds relative to previous versions.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

Input shaping on a lightweight gantry robot

Author  Wayne Book

Video ID : 777

This video shows an industrial application by CAMotion, Inc. of input command shaping to cancel modes of vibration of a large, lightweight gantry robot, designated the LDP, carrying a heavy “log” of printed paper to a conveyor. The method has been patented (D.P. Magee, W.J. Book: Optimal Arbitrary Time-delay (OAT) Filter and Method to Minimize Unwanted System Dynamics, US Patent 6078844 (2000)). This commercial robot is the one depicted also in Fig. 11.13. Its successor is marketed by PaR Systems, Inc. Reference: D.P. Magee, W.J. Book: The application of input shaping to a system with varying parameters, Proc. 1992 Japan-USA Symp. Flexible Automation, San Francisco (1992), pp. 519-526

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Human-robot interaction planning

Author  Sven Parusel, Hannes Widmoser, Saskia Golz, Tobias Ende, Nico Blodow, Matteo Saveriano, Kai Krieger, Alexis Maldonado, Ingo Kresse, Roman Weitschat, Dongheui Lee, Michael Beetz, Sami Haddadin

Video ID : 616

The video presents the main aspects that have to be taken into consideration for joint human-robot assembly. These are: i) planning and appropriately distributing the tasks between human, robot, and collaboration; ii) a suitable interface between human and robot by visual and haptic gestures; iii) compliant and sensitive robot control in delivery, storage, hand-over, and assembly of parts; iv) collision detection and distinguishing from intended contacts during collaboration. The overall concept is presented for the exemplary assembly of a toy-train-track. (AAAI 2014, Video Competition)

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Modsnake fence navigation

Author  Howie Choset

Video ID : 165

Video of the CMU Modsnake navigating under a fence.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.


Author  Argo Medical Technologies

Video ID : 508

The ReWalk is a legged exoskeleton designed to help people with paralysis to walk.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Mobile-robot navigation system in outdoor pedestrian environment

Author  Chin-Kai Chang

Video ID : 711

We present a mobile-robot navigation system guided by a novel vision-based, road-recognition approach. The system represents the road as a set of lines extrapolated from the detected image contour segments. These lines enable the robot to maintain its heading by centering the vanishing point in its field of view, and to correct the long-term drift from its original lateral position. We integrate odometry and our visual, road-recognition system into a grid-based local map which estimates the robot pose as well as its surroundings to generate a movement path. Our road recognition system is able to estimate the road center on a standard dataset with 25 076 images to within 11.42 cm (with respect to roads that are at least 3 m wide). It outperforms three other state-of-the-art systems. In addition, we extensively test our navigation system in four busy campus environments using a wheeled robot. Our tests cover more than 5 km of autonomous driving on a busy college campus without failure. This demonstrates the robustness of the proposed approach to handle challenges including occlusion by pedestrians, non-standard complex road markings and shapes, shadows, and miscellaneous obstacle objects.

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

Test-driving Beam, the telepresence robot

Author  Erwin Prassler

Video ID : 744

Scott Hassan from Suitable Technologies explaining the telepresence robot Beam to Parmy Olson from Forbes Magazine.