View Chapter

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Robotic assembly of emergency-stop buttons

Author  Andreas Stolt, Magnus Linderoth, Anders Robertsson, Rolf Johansson

Video ID : 692

Industrial robots are usually position controlled, which requires high accuracy of the robot and the workcell. Some tasks, such as assembly, are difficult to achieve by using using only position sensing. This work presents a framework for robotic assembly, where a standard position-based robot program is integrated with an external controller performing with force-controlled skills. The framework is used to assemble emergency-stop buttons which had been tailored to be assembled by humans. This work was published in A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled assembly of emergency stop button, Proc. Int. Conf. Robot. Autom. (ICRA), Shanghai (2011), pp. 3751–3756

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

A path-following control scheme for a four-wheeled mobile robot

Author  Genya Ishigami, Keiji Nagatani, Kazuya Yoshida

Video ID : 188

This video shows a feedback control for planetary rovers. It calculates both steering and driving maneuvers that can compensate for wheel slips and also enable the rover to successfully traverse a sandy slope. The performance was confirmed in slope traversal experiments using a four-wheeled rover test bed. In this split video clip, no slip control is performed on the left, and slip-compensation-feedback control is conducted on the right. The rover's motion is detected by the visual odometry system using a telecentric camera.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Extended Kalman-filter SLAM

Author  John Leonard

Video ID : 455

This video shows an illustration of Kalman filter SLAM, as described in Chap. 46.3.1, Springer Handbook of Robotics, 2nd edn (2016). References: J.J. Leonard, H. Feder: A computationally efficient method for large-scale concurrent mapping and localization, Proc. Int. Symp. Robot. Res. (ISRR), Salt Lake City (2000), pp. 169–176.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

1961 nuclear-reactor meltdown : The SL-1 accident - United States Army Documentary - WDTVLIVE42

Author  James P. Trevelyan

Video ID : 589

This archive film, though long, provides graphic details on a relatively modest nuclear accident illustrating the difficulties that still face researchers working to provide robotic solutions.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

The ArmeoSpring Therapy Exoskeleton

Author  Hocoma, A.G.

Video ID : 502

The ArmeoSpring Therapy Exoskeleton is a widely-used arm- and-hand training exoskeleton manufactured by Hocoma which provides anti-gravity support and can sense trace-grasp force. It is based on the T-WREX device developed at the University of California at Irvine, which in turn was based in part of the WREX arm exoskeleton developed at the A.I. Dupont Hospital for Children.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

6-DOF statically balanced parallel robot

Author  Clément Gosselin

Video ID : 48

This video demonstrates a 6-DOF statically balanced parallel robot. References: 1. C. Gosselin, J. Wang, T. Laliberté, I. Ebert-Uphoff: On the design of a statically balanced 6-DOF parallel manipulator, Proc. IFToMM Tenth World Congress Theory of Machines and Mechanisms, Oulu (1999) pp. 1045-1050; 2. C. Gosselin, J. Wang: On the design of statically balanced motion bases for flight simulators, Proc. AIAA Modeling and Simulation Technologies Conf., Boston (1998), pp. 272-282; 3. I. Ebert-Uphoff, C. Gosselin: Dynamic modeling of a class of spatial statically-balanced parallel platform mechanisms, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Detroit (1999), Vol. 2, pp. 881-888

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Lane tracking

Author  Alex Zelinsky

Video ID : 836

This video demonstrates robust lane tracking under variable conditions, e.g., rain and poor lighting. The system uses a particle-filter-based approach to achieve robustness.

Collision avoidance at blind intersections using V2V and intention / expectation approach (Inria & Renault)

Author  Christian Laugier, Stephanie Lefevre

Video ID : 822

This video shows how collisions can be avoided at a blind intersection, by using vehicle-to-vehicle communications and by comparing the inferred intentions of drivers and their expected behaviors. More details can be found in [62.26].

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Side-looking TOF sonar simulation

Author  Roman Kuc

Video ID : 302

When a sonar is oriented 45 degrees to the side of the mobile-robot travel direction, retro-reflectors - posts and corners - produce TOF values which form a hyperbola. The hyperbola can be processed to determine the retro-reflector location.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Kuka LWR : Trajectory with load

Author  Maxime Gautier

Video ID : 483

This video shows a trajectory with a known payload mass of 4.6 (kg) used to identify the dynamic parameters and torque-sensor gains of the KUKA LWR manipulator. Details and results are given in the papers: A. Jubien, M. Gautier, A. Janot: Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data, preprints 19th IFAC World Congress, Cape Town (2014) pp. 8391-8396 M. Gautier, A. Jubien: Force calibration of the Kuka LWR-like robots including embedded joint torque sensors and robot structure, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Chicago (2014) pp. 416-421