View Chapter

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Adaptive force/velocity control for opening unknown doors

Author  Yiannis Karayiannidis, Colin Smith, Francisco E. Vina, Petter Ogren, Danica Kragic

Video ID : 675

We propose a method that can open doors without prior knowledge of the door's kinematics. The method consists of a velocity controller that uses force measurements and estimates of the radial direction based on adaptive estimates of the position of the door hinge. The control action is decomposed into an estimated radial and tangential direction, following the concept of hybrid force/motion control.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

RHex the parkour robot

Author  Uluc Saranli, Martin Buehler, Daniel E. Koditschek

Video ID : 400

RHex is an all-terrain walking robot that could conceivably one day climb over rubble in a rescue mission or cross the desert with environmental sensors strapped to its back. The name is pronounced "Rex" like the over-excited puppy it resembles when it is bounding over the ground; RHex is short for "robot hexapod", a name that stems from its six springy legs.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Autonomous aerial-vehicle, carrier-landing contest (2001)

Author  KIPR

Video ID : 633

KIPR's first aerial robot contest featuring several middle and high schools from Oklahoma and neighboring states. It was held at the University of Oklahoma's Rawl Engineering Practice Facility. Teams used AR drones and KIPR's CBC2 controller to program the drone and have the drone react autonomously. No human control was used. Four very different approaches are shown to the event, in which the teams programmed their robots to totry land on a moving platform.

Chapter 52 — Modeling and Control of Aerial Robots

Robert Mahony, Randal W. Beard and Vijay Kumar

Aerial robotic vehicles are becoming a core field in mobile robotics. This chapter considers some of the fundamental modelling and control architectures in the most common aerial robotic platforms; small-scale rotor vehicles such as the quadrotor, hexacopter, or helicopter, and fixed wing vehicles. In order to control such vehicles one must begin with a good but sufficiently simple dynamic model. Based on such models, physically motivated control architectures can be developed. Such algorithms require realisable target trajectories along with real-time estimates of the system state obtained from on-board sensor suite. This chapter provides a first introduction across all these subjects for the quadrotor and fixed wing aerial robotic vehicles.

Dubins airplane

Author  Randy Beard

Video ID : 437

This video shows how paths are planned using software based on the Dubins airplane model.

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Bayesian Embedded Perception in Inria/Toyota instrumented platform

Author  Christian Laugier, E-Motion Team

Video ID : 566

This video illustrates the concept of “Embedded Bayesian Perception”, which has been developed by Inria and implemented on the Inria/Toyota experimental Lexus vehicle. The objective is to improve the robustness of the on-board perception system of the vehicle, by appropriately fusing the data provided by several heterogeneous sensors. The system has been developed as a key component of an electronic co-pilot, designed for the purpose of detecting dangerous driving situations a few seconds ahead. The approach relies on the concept of the “Bayesian Occupancy Filter” developed by the Inria E-Motion Team. More technical details can be found in [62.25].

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Reducing uncertainty in robotics surface-assembly tasks

Author  Jing Xiao et al.

Video ID : 356

This video demonstrates how surface assembly strategies with pose estimation can be used to overcome pose uncertainties. The assembly path is updated based on the newly estimated values of parameters after the compliant exploratory move. In this way, the robot is able to successfully overcome disparities between the nominal and the actual poses of the objects to accomplish the assembly. No force sensor is used.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Parallel 5R robot

Author  Ilian Bonev

Video ID : 46

This video demonstrates a planar parallel 5R robot that is designed to fully exploit its workspace.

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Salisbury Hand

Author  Ken Salisbury

Video ID : 751

The well-known Ken Salisbury Hand has been designed in order to optimize its workspace and its manipulation capabilities. It has been emulated in many other devices.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Free-floating autonomous underwater manipulation: Connector plug/unplug

Author  CIRS Universitat de Girona

Video ID : 789

Peg-in-hole demonstration performed autonomously with an underwater-vehicle manipulator system. The implementation is done through MoveIt!.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR GETEX manipulation experiments on ETS-VII

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 332

This is a video record of the remote control of the first free-flying space robot ETS-VII from the DLR ground control station in Tsukuba, done in close cooperation with Japan’s NASDA (today’s JAXA). The video shows a visual-servoing task in which the robot moves autonomously to a reference position defined by visual markers placed on the experimental task board. In view are the true camera measurements (top left, end-effector camera; top right, side camera), the control room in the ground control station (bottom left), and the robot simulation environment (bottom right), which was used as a predictive simulation tool.