View Chapter

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Roller-Walker: Leg-wheel hybrid vehicle

Author  Gen Endo

Video ID : 535

A leg-wheel hybrid vehicle developed by Dr. Endo.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Demonstration of multisensor integration in industrial manipulation

Author  Torsten Kröger et al.

Video ID : 361

This video demonstrates the potential of multisensor integration in industrial manipulation. A robot is programmed to play the Jenga game. Two cameras are mounted on the manipulator to calculate the positions of all cuboids online. A 6-DOF force/torque sensor and a 6-DOF acceleration sensor are mounted between a hand and gripper to give force/tactile feedback. The manipulator randomly chooses one block and tries to push it out and then put it on the top of the tower. In this video, a record of putting 29 blocks onto the top of the tower is achieved.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

RDP experimental results

Author  Nabil Simaan

Video ID : 247

Demonstrates a prototype system for transurethral bladder cancer resection. This robot has a 5 mm snake with two segments and three working channels including a custom-made fiberscope, laser ablation and a gripper [1-3]. References: [1] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: A pilot ex-vivo evaluation of a telerobotic system for transurethral intervention and surveillance, The 5th Hamlyn Symp. Medical Robotics (2012), pp. 3-4; [2] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 5817-5822; [3] R. E. Goldman, A. Bajo, L. S. MacLachlan, R. Pickens, S. D. Herrell, N. Simaan: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Trans. Biomed. Eng. 60(4), 918-925 (2013)

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Side-looking TOF sonar simulation

Author  Roman Kuc

Video ID : 302

When a sonar is oriented 45 degrees to the side of the mobile-robot travel direction, retro-reflectors - posts and corners - produce TOF values which form a hyperbola. The hyperbola can be processed to determine the retro-reflector location.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Robust and fast manipulation of objects with multi-fingered hands

Author  Thomas Schlegl et al.

Video ID : 364

The video shows an example of fast manipulation of inserting a bulb into a socket. The bulb is grasped by a TIT-hand and screwed until contact between the bulb and the socket is established.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

GoQBot: Insanely fast robot caterpillar

Author  Huai-Ti Lin, Gary Leisk, Barry Trimmer

Video ID : 291

The GoQBot is a soft-bodied silicon rubber robot which uses a ballistic rolling technique powered by actuators made out of shape-memory alloy coils to move "crazy fast"; its push-off time is under 250 ms, and it spins at 300 rpm.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Three-dimensional binary manipulator

Author  Greg Chirikjian

Video ID : 161

Greg Chirikjian's binary manipulator operating in three dimensions.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Biologically-inspired, multi-vehicle control algorithm

Author  Johns Hopkins University Applied Physics Laboratory

Video ID : 197

This video demonstrates a behavior-based control algorithm for autonomous operations in militarily-useful scenarios on numerous hardware platforms. This video shows that the algorithm is robust in complex operational environments, enabling the autonomous vehicle to react quickly to changing battlefield conditions.