View Chapter

Chapter 28 — Force and Tactile Sensing

Mark R. Cutkosky and William Provancher

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

Capacitive tactile sensing

Author  Mark Cutkosky

Video ID : 14

Video demonstrating the capacitive tactile sensing suite on the SRI-Meka-Stanford four-fingered hand built for the DARPA ARM-H Mobile Manipulation program.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Robotic wheelchair: Autonomous navigation with Google Glass

Author  Personal Robotics Group - OSU

Video ID : 709

For people with extreme disabilities such as ALS or quadriplegia, it is often hard to move about on their own and interact with their environments due to their immobility. Our work - nicknamed "Project Chiron" - attempts to alleviate some of this immobility with a kit that can be used on any Permobil-brand wheelchair.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Distributed manipulation with mobile robots

Author  Bruce Donald, Jim Jennings, Daniela Rus

Video ID : 208

This video demonstrates cooperative robot pushing without explicit communication.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning from failure I

Author  Aude Billard

Video ID : 476

This video illustrates how learning from demonstration can be bootstrapped using failed demonstrations only (in place of traditional approaches that use successful demonstrations). The algorithm is described in detail in two publications: 1)D.-H. Grollman, A. Billard: Donut as I do: Learning from failed demonstrations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai (2011) Best Paper Award (Cognitive Robotics); 2) D.-H. Grollman, A. Billard: Robot learning from failed demonstrations, Int. J. Social Robot. 4(4), 331-342 (2012).

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

StickybotIII climbing robot

Author  Mark R. Cutkosky

Video ID : 540

A walk climbing robot developed by Prof. Cutkosky and his colleagues.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

The FLEA: Flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism

Author  Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, Kyu-Jin Cho

Video ID : 281

The FLEA: flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism. The robot was created to realize a flea-inspired catapult mechanism with shape-memory-alloy (SMA) spring actuators and a smart composite microstructure. The robot was fabricated with a weight of 1.1 g and a 2 cm body size, so that it can jump a distance of up to 30 times its body size.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Robust and fast manipulation of objects with multi-fingered hands

Author  Thomas Schlegl et al.

Video ID : 364

The video shows an example of fast manipulation of inserting a bulb into a socket. The bulb is grasped by a TIT-hand and screwed until contact between the bulb and the socket is established.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

A ride in the Google self-driving car

Author  Google Self-Driving Car Project

Video ID : 710

The maturity of the tools developed for mobile-robot navigation and explained in this chapter have enabled Google to integrate them into an experimental vehicle. This video demonstrates Google's self-driving technology on the road.