View Chapter

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Exploitation of social cues to speed up learning

Author  Sylvain Calinon, Aude Billard

Video ID : 106

Use of social cues to speed up the imitation-learning process, with gazing and pointing information to select the objects relevant for the task. Reference: S. Calinon, A.G. Billard: Teaching a humanoid robot to recognize and reproduce social cues, Proc. IEEE Int. Symp. Robot Human Interactive Communication (Ro-Man), Hatfield (2006), pp. 346–351; URL: http://lasa.epfl.ch/research/control_automation/interaction/social/index.php .

Chapter 75 — Biologically Inspired Robotics

Fumiya Iida and Auke Jan Ijspeert

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biologicalmodels ofmotion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].

Salamandra Robotica II - Swimming-to-walking transition

Author  Fumiya Iida, Auke Ijspeert

Video ID : 113

This video presents the swimming-to-walking transition of a bioinspired salamander-like robot: Salamandra Robotica II. The modular configuration of this robot takes advantage of coordinated motions of motors based on the rhythmic patterns generated by CPGs. Because of the flexible coordination, the robot is able to exhibit locomotion both underwater and on the ground.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Targeted reinnervation and the DEKA Arm

Author  Rehabilitation Institute of Chicago

Video ID : 513

Claudia Mitchell, 28, of Arkansas, demonstrates advanced, multidegree control of the DEKA Research arm at The Rehabilitation Institute of Chicago. Mitchell, who lost her arm in a motorcycle accident in 2004, underwent targeted muscle reinnervation in 2005. Video courtesy of the Rehabilitation Institute of Chicago and DEKA Research. Learn more at www.ric.org/bionic.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Asymmetric teleoperation of dual-arm mobile manipulator

Author  Pawel Malysz, Shahin Sirouspour

Video ID : 75

The video presents an experiment demonstrating a dual-master system to teleoperate a single-slave mobile manipulator system with haptic feedback for the remote-block transfer task.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Social referencing behavior

Author  Cynthia Breazeal

Video ID : 556

This video is an example of how nonverbal and verbal communication, emotive behavior, and social learning integrate to support social referencing in human-robot interaction. The robot, Leonardo, learns the affective appraisal of two novel objects by reading the affective appraisal given by a person (via facial expression, tone of voice, and word choice). The robot uses joint attention mechanisms to understand the referent of the interaction, and learns to associate the affective appraisal with this novel object. The robot then uses its own emotive responses to engage with that object accordingly (e.g., approach and explore a positively appraised object, avoid a negatively appraised object).

Overview of Autom: A robotic health coach for weight management

Author  Cynthia Breazeal

Video ID : 558

This video presents an overview of Autom, a robot designed to serve as a personal coach for weight management during a longitudinal study. Fifteen robots were deployed over a period of two months and were compared to two other conditions: A computer coach with the same dialog (but no physical or social embodiment) and a paper log (standard of care). The primary question the study addressed was long-term usage and engagement as that is the most critical to keeping weight off. The hypothesis (verified by the longitudinal study) is that the physical-social embodiment makes a positive difference in people's sustained engagement, perception of their working alliance, and social support provided by the robot (than the other two interventions). People were more engaged with the robot than the other two interventions, and the emotional bond was notable in the robot modality and much less so in the other two interventions.

Chapter 35 — Multisensor Data Fusion

Hugh Durrant-Whyte and Thomas C. Henderson

Multisensor data fusion is the process of combining observations from a number of different sensors to provide a robust and complete description of an environment or process of interest. Data fusion finds wide application in many areas of robotics such as object recognition, environment mapping, and localization.

This chapter has three parts: methods, architectures, and applications. Most current data fusion methods employ probabilistic descriptions of observations and processes and use Bayes’ rule to combine this information. This chapter surveys the main probabilistic modeling and fusion techniques including grid-based models, Kalman filtering, and sequential Monte Carlo techniques. This chapter also briefly reviews a number of nonprobabilistic data fusion methods. Data fusion systems are often complex combinations of sensor devices, processing, and fusion algorithms. This chapter provides an overview of key principles in data fusion architectures from both a hardware and algorithmic viewpoint. The applications of data fusion are pervasive in robotics and underly the core problem of sensing, estimation, and perception. We highlight two example applications that bring out these features. The first describes a navigation or self-tracking application for an autonomous vehicle. The second describes an application in mapping and environment modeling.

The essential algorithmic tools of data fusion are reasonably well established. However, the development and use of these tools in realistic robotics applications is still developing.

Application of visual odometry for sewer-inspection robots

Author  José Saenz, Christoph Walter, Erik Schulenburg, Norbert Elkmann, Heiko Althoff

Video ID : 638

Exploits a multisensor robot (multiple cameras and range finder) to inspect pipelines.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM (Example 1)

Author  Giorgio Grisetti

Video ID : 442

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), performed on the campus of the University of Freiburg, Germany.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Staubli TX40 : Trajectory without load

Author  Maxime Gautier

Video ID : 480

This video shows a trajectory without load used to identify the dynamic parameters of the links, the load and the joint drive chain of an industrial Staubli TX 40 manipulator. Details and results are provided in the paper: M. Gautier, S. Briot: Global identification of joint drive gains and dynamic parameters of robots, ASME J. Dyn. Syst. Meas. Control 136(5), 051025-051025-9 (2014); doi:10.1115/1.4027506

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

Test-driving Beam, the telepresence robot

Author  Erwin Prassler

Video ID : 744

Scott Hassan from Suitable Technologies explaining the telepresence robot Beam to Parmy Olson from Forbes Magazine.