Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.
An autonomous robot for de-leafing cucumber plants
Author Elder J. van Henten, Bart A.J. van Tuijl, G. J. Hoogakker, M.J. van der Weerd, Jochen Hemming, J.G. Kornet, Jan Bontsema
Video ID : 309
In cucumber production, amongst other crops, removal of old non-productive leaves in the lower regions of the plant is a time consuming task. Based on the platform of the autonomous cucumber harvester at Wageningen University and Research Centre, Wageningen, The Netherlands, a robot for de-leafing cucumber plants was developed. The platform's camera system identifies and locates the main stems of the plants. The gripper is sent to the plant and moved upwards. Leaves encountered during this upward motion are separated from the plant using a thermal cutting device which prevents transmission of viruses from plant to plant. An interesting feature of this machine is that, with slight modifications of software and hardware, two greenhouse operations can be performed.