View Chapter

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

PI piezo hexapod

Author  Physik Instrumente

Video ID : 648

Fig. 4.26 A six-axis Physik Instrumente (PI) piezo hexapod with sub-nanometer resolution.

Chapter 39 — Cooperative Manipulation

Fabrizio Caccavale and Masaru Uchiyama

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperativemanipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the socalled symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture ofmodeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

Cooperative grasping and transportation of an object using two industrial manipulators

Author  Francesco Basile, Fabrizio Caccavale, Pasquale Chiacchio, Jolanda Coppola, Alessandro Marino

Video ID : 69

This video shows an example of cooperative grasping and transportation of an object using two industrial manipulators. A two-layer hierarchical, kinematic control is adopted, based on a suitable task formulation for general multi-arm systems. Reference: F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, A. Marino: A decentralized kinematic control architecture for collaborative and cooperative multi-arm systems, Mechatronics, 23, 1100-1112 (2013).

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Synchronization and fault detection in autonomous rbots

Author  Andres Lyhne Christensen, Rehan O'Grady, Marco Dorigo

Video ID : 194

This video demonstrates a group of robots detecting faults in each other and simulating repair. The technique relies on visual fire-fly-like synchronization. Each robot synchronizes with the others based on the detection of LED lights and flashes using on-board cameras. The robots simulate fault and repair based on the frequency of flashes. The video shows an experiment with many robots working together and simulating faults and repairs.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

DIGGER DTR Demining destroying anti-tank mines

Author  James P. Trevelyan

Video ID : 577

This is a Swiss-designed and built, remotely-controlled machine similar to Bozena, shown clearing vegetation. From the video, it seems to lack some of the versatility of Bozena. However, it is clearly able to continue working without being affected by powerful anti-tank mine explosions, even ones with shaped charges like the TMRP-1. Specifications include remote control, 8-ton weight, and deployment from a 20-ft standard shipping container.   The personnel protection shield provides only minimal protection. The more recent DIGGER D-3 ground-milling machine (https://www.youtube.com/watch?v=P154EDpRFew) avoids many of the weaknesses of the flail machine used in the earlier model and incorporates a more robust design, and it also has dust and shrapnel protection.

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Preliminary results of sonar-based SLAM using landmarks

Author  Hyun-Taek Choi

Video ID : 794

This video records preliminary experimental results of a sonar-based SLAM algorithm developed by KRISO (Korea Research Institute of Ships and Ocean Engineering). A position obtained by the proposed probability-based landmark-recognition method and landmarks especially designed for sonar is used to correct the position estimated by IMU/DVL navigation using EKF (extended Kalman filter).

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Autonomous, self-contained, soft robotic fish

Author  Andrew D. Marchese, Cagdas D. Onal, Daniela Rus

Video ID : 433

The robotic fish was built by Andrew Marchese, a graduate student in MIT's Department of Electrical Engineering and Computer Science and the lead author of the paper, where he is joined by Daniela Rus and postdoc Cagdas D. Onal. Each side of the fish's tail is bored through with a long, tightly undulating channel. Carbon dioxide released from a canister in the fish's abdomen causes the channel to inflate, bending the tail in the opposite direction.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Variable impedance actuators: Moving the robots of tomorrow

Author  B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, Ganesh, Garabini, Grebenstein, Grioli, Haddadin, Jafari, Laffranchi, Lefeber, Petit, Stramigioli, Tsagarakis, Van Damme, Van Ham, Visser, Wolf

Video ID : 456

Most of today's robots have rigid structures and actuators requiring complex software control algorithms and sophisticated sensor systems in order to behave in a compliant and safe way adapted to contact with unknown environments and humans. By studying and constructing variable impedance actuators and their control, we contribute to the development of actuation units that can match the intrinsic safety, motion performance and energy efficiency of biological systems and, in particular, of the humans. As such, this may lead to a new generation of robots that can co-exist and co-operate with people and get closer to the human manipulation and locomotion performance than is possible with current robots.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Staubli TX40 : Trajectory without load

Author  Maxime Gautier

Video ID : 480

This video shows a trajectory without load used to identify the dynamic parameters of the links, the load and the joint drive chain of an industrial Staubli TX 40 manipulator. Details and results are provided in the paper: M. Gautier, S. Briot: Global identification of joint drive gains and dynamic parameters of robots, ASME J. Dyn. Syst. Meas. Control 136(5), 051025-051025-9 (2014); doi:10.1115/1.4027506

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

An omnidirectional robot with four mecanum wheels

Author  Nexus Automation Limited

Video ID : 327

This video shows a holonomic omnidirectional mobile robot with four mecanum wheels. The mecanum wheel is similar to the Swedish wheel. The rollers of the mecanum wheel have an axis of rotation at 45° to the axis of the wheel hub rotation. The design problem of omnidirectional robots becomes easier because the rotating axes of all wheel hubs can be placed in parallel.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Incremental learning of finger manipulation with tactile capability

Author  Eric Sauser, Brenna Argall, Aude Billard

Video ID : 104

Incremental learning of fingers manipulation skill, first demonstrated through a dataglove and then refined through kinesthetic teaching by exploiting the tactile capabilities of the iCub humanoid robot. Reference: E.L. Sauser, B.D. Argall, G. Metta, A.G. Billard: Iterative learning of grasp adaptation through human corrections, Robot. Auton. Syst. 60(1), 55–71 (2012); URL: http://www.sauser.org/videos.php?id=9 .