View Chapter

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

Artificial bacterial flagella

Author  Bradley J. Nelson

Video ID : 11

This video shows two swimming microrobots (named artificial bacterial flagella) which are actuated by an externally applied magnetic torque. The microrobots are made of a magnetic, nanoparticle composite. They are steered manually through polymer microtunnels.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

An autonomous robot for de-leafing cucumber plants

Author  Elder J. van Henten, Bart A.J. van Tuijl, G. J. Hoogakker, M.J. van der Weerd, Jochen Hemming, J.G. Kornet, Jan Bontsema

Video ID : 309

In cucumber production, amongst other crops, removal of old non-productive leaves in the lower regions of the plant is a time consuming task. Based on the platform of the autonomous cucumber harvester at Wageningen University and Research Centre, Wageningen, The Netherlands, a robot for de-leafing cucumber plants was developed. The platform's camera system identifies and locates the main stems of the plants. The gripper is sent to the plant and moved upwards. Leaves encountered during this upward motion are separated from the plant using a thermal cutting device which prevents transmission of viruses from plant to plant. An interesting feature of this machine is that, with slight modifications of software and hardware, two greenhouse operations can be performed.

Chapter 52 — Modeling and Control of Aerial Robots

Robert Mahony, Randal W. Beard and Vijay Kumar

Aerial robotic vehicles are becoming a core field in mobile robotics. This chapter considers some of the fundamental modelling and control architectures in the most common aerial robotic platforms; small-scale rotor vehicles such as the quadrotor, hexacopter, or helicopter, and fixed wing vehicles. In order to control such vehicles one must begin with a good but sufficiently simple dynamic model. Based on such models, physically motivated control architectures can be developed. Such algorithms require realisable target trajectories along with real-time estimates of the system state obtained from on-board sensor suite. This chapter provides a first introduction across all these subjects for the quadrotor and fixed wing aerial robotic vehicles.

Dubins airplane

Author  Randy Beard

Video ID : 437

This video shows how paths are planned using software based on the Dubins airplane model.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

STriDER: Self-excited tripedal dynamic experimental robot

Author  Dennis Hong

Video ID : 534

Tripod walking robot developed by Dr. Heaston, Prof. Hong, Dr. Morazzani, Dr. Ren, and Dr. Goldman at the Robotics and Mechanisms Laboratory of Virginia Tech.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Visual navigation with collision avoidance

Author  Dario Floreano

Video ID : 37

Evolved Khepera displaying vision-based collision avoidance. A network of spiking neurons is evolved to drive the vision-based robot in the arena. A llight below the rotating contacts enables continuous evolution, even overnight.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Human robot arm with redundancy resolution

Author  PRISMA Lab

Video ID : 816

In this video, the mapping of human-arm motion to an anthropomorphic robot arm (7-DOF Kuka LWR ) using Xsens MVN is demonstrated. The desired end-effector trajectories of the robot are reconstructed from the human hand, forearm and upper arm trajectories in the Cartesian space obtained from the motion tracking system by means of human-arm biomechanical models and sensor-fusion algorithms embedded in the Xsens technology. The desired pose of the robot is reconstructed taking into account the differences between the robot and human-arm kinematics and is obtained by suitably scaling to the human-arm link dimensions.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Global Conference on Educational Robotics and International Botball Tournament

Author  KIPR

Video ID : 241

GCER is a STEM-oriented robotics conference, in which the majority of the attendees, paper authors, and presenters are K-12 robotics students. Educator-paper tracks and technology-research tracks also occur. GCER is also the site of the International Botball Tournament, KIPR Open, aerial robots contests, and elementary-school robotics challenges. Some of the recent guest speakers at the conference have included Dr. Maja Mataric (human-robot interactions), Dr. Vijay Kumar (coordinated flying robots), and Dr. Hiroshi Ishiguro (androids). Details from: http://www.kipr.org/gcer .

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Preliminary experimental result of the ROV iTurtle

Author  Hyun-Taek Choi

Video ID : 797

This video shows the preliminary experimental result of an underwater robot named iTurtle developed by KRISO (Korea Research Institute of Ships and Ocean Engineering). iTurtle is especially designed for underwater-structure inspection as an observation class ROV. It has dimming and direction controllable LED and halogen lights and a HD underwater camera, all of which are positioned by four horizontal thrusters. More importantly, its system software architecture is implemented using the structure explained in Fig. 25.7. The motion in this video is controlled by a human operator.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Side-looking multipulse sonar moving down cinder-block hallway

Author  Roman Kuc

Video ID : 303

Rather than producing a single TOF reading per emission, the multipulse sonar produces multiple spikes by quickly resetting the sonar-detector integrator, thereby producing a spike density related to the echo amplitude. A side-looking sonar scans a cinder-block wall containing a door and window jambs. The resulting spikes have been processed to differentiate the first cinder-block wall, the cider-block surface and localize the window and door jambs. The red circles indicate the initial TOF values and illustrate the additional echo waveform data produced by the multipulse sonar. Reference: R. Kuc: Recognizing retro-reflectors with an obliquely-oriented multi-point sonar and acoustic flow, Int. J. Robot. Res. 22(2), 129-145, (2003); doi:10.1177/0278364903022002004.

B-scan image of indoor potted tree using multipulse sonar

Author  Roman Kuc

Video ID : 315

By repeatedly clearing the conventional sonar ranging board, each echo produces a spike sequence that is related to the echo amplitude. A brightness-scan (B-scan) image - similar to diagnostic ultrasound images - is generated by transforming the short-term spike density into a gray scale intensity. The video shows a B-scan of a potted tree in an indoor environment containing a doorway (with door knob) and a tree located in front of a cinder-block wall. The B-scan shows the specular environmental features as well as the random tree-leaf structures. Note that the wall behind the tree is also clearly imaged. Reference: R. Kuc: Generating B-scans of the environment with a conventional sonar, IEEE Sensor. J. 8(2), 151 - 160 (2008); doi: 10.1109/JSEN.2007.908242 .