View Chapter

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Collaborative human-focused robotics for manufacturing

Author  CHARM Project Consortium

Video ID : 717

The CHARM project demonstrates methods for interacting with robotic assistants through developments in the perception, communication, control, and safe interaction technologies and techniques centered on supporting workers performing complex manufacturing tasks.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Autonomous robotic smart-wheelchair navigation in an urban environment

Author  VADERlab

Video ID : 707

This video demonstrates the reliable navigation of a smart wheelchair system (SWS) in an urban environment. Urban environments present unique challenges for service robots. They require localization accuracy at the sidewalk level, but compromise estimated GPS positions through significant multipath effects. However, they are also rich in landmarks that can be leveraged by feature-based localization approaches. To this end, the SWS employed a map-based approach. A map of South Bethlehem was acquired using a server vehicle, synthesized a priori, and made accessible to the SWS client. The map embedded not only the locations of landmarks, but also semantic data delineating seven different landmark classes to facilitate robust data association. Landmark segmentation and tracking by the SWS was then accomplished using both 2-D and 3-D LIDAR systems. The resulting localization algorithm has demonstrated decimeter-level positioning accuracy in a global coordinate frame. The localization package was integrated into a ROS framework with a sample-based planner and control loop running at 5 Hz. For validation, the SWS repeatedly navigated autonomously between Lehigh University's Packard Laboratory and the University bookstore, a distance of approximately 1.0 km roundtrip.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Overview of Autom: A robotic health coach for weight management

Author  Cynthia Breazeal

Video ID : 558

This video presents an overview of Autom, a robot designed to serve as a personal coach for weight management during a longitudinal study. Fifteen robots were deployed over a period of two months and were compared to two other conditions: A computer coach with the same dialog (but no physical or social embodiment) and a paper log (standard of care). The primary question the study addressed was long-term usage and engagement as that is the most critical to keeping weight off. The hypothesis (verified by the longitudinal study) is that the physical-social embodiment makes a positive difference in people's sustained engagement, perception of their working alliance, and social support provided by the robot (than the other two interventions). People were more engaged with the robot than the other two interventions, and the emotional bond was notable in the robot modality and much less so in the other two interventions.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Extended Kalman-filter SLAM

Author  John Leonard

Video ID : 455

This video shows an illustration of Kalman filter SLAM, as described in Chap. 46.3.1, Springer Handbook of Robotics, 2nd edn (2016). References: J.J. Leonard, H. Feder: A computationally efficient method for large-scale concurrent mapping and localization, Proc. Int. Symp. Robot. Res. (ISRR), Salt Lake City (2000), pp. 169–176.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Adaptive synergies for a humanoid robot hand

Author  Centro di Ricerca Enrico Piaggio

Video ID : 658

We present the first implementation of the UNIPI-hand, a highly integrated prototype of an anthropomorphic hand that conciliates the idea of adaptive synergies with a human-form factor. The video validates the hand's versatility by showing grasp and manipulation actions on a variety of objects.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Footstep planning modeled as a whole-body, inverse-kinematic problem

Author  Eiichi Yoshida

Video ID : 596

An augmented-robot structure was introduced as "virtual" planar links attached to a foot that represents footsteps. This modeling makes it possible to solve the footstep planning as a problem of inverse kinematics, and also to determine the final whole-body configuration. After planning the footsteps, the dynamically-stable, whole-body motion including walking can be computed by using a dynamic pattern generator.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

2.5-D VS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 64

This video shows a 2.5-D VS on a 6-DOF robot arm with (x_g, log(Z_g), theta u) as visual features. It corresponds to the results depicted in Figure 34.12.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Staubli TX40 : Trajectory without load

Author  Maxime Gautier

Video ID : 480

This video shows a trajectory without load used to identify the dynamic parameters of the links, the load and the joint drive chain of an industrial Staubli TX 40 manipulator. Details and results are provided in the paper: M. Gautier, S. Briot: Global identification of joint drive gains and dynamic parameters of robots, ASME J. Dyn. Syst. Meas. Control 136(5), 051025-051025-9 (2014); doi:10.1115/1.4027506

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Robotic ray takes a swim

Author  Hilary Bart-Smith

Video ID : 434

Bart-Smith's lab built the robot to mimic the nearly silent flaps of a ray's wing-like fins as it swims or glides through the water. They first began by studying living rays in the ocean and in the lab, as well as dissecting dead specimens to understand how nature engineered their bodies. Such rays can accelerate or hold position while using relatively little energy — an inspiration for making underwater drones that can stay at sea for long periods, without refueling or recharging.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Interactive perception of articulated objects

Author  Roberto Martin-Martin

Video ID : 676

Interactive perception of articulated objects with multilevel, recursive estimation based on task-specific priors.