View Chapter

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

“Sukura” robot developed for reconnaissance missions inside nuclear reactor buildings

Author  James P. Trevelyan

Video ID : 584

This video shows a robot "Sakura" or "Cherry Blossom" developed by researchers at the Chiba Institute of Technology, creators of the successful "Quince" robot.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Visual communicative nonverbal behaviors of the Sunflower robot

Author  Kerstin Dautenhahn

Video ID : 219

The video illustrates the experiments as described in Koay et. al (2013). The Sunflower robot, developed by Kheng Lee Koay at the University of Hertfordshire, is a non-humanoid robot, using communicative signals inspired by dog-human interaction. The biological behaviors had been abstracted and translated to the specific robot embodiment. The results show that the robot is able to communicate its intention to a person and encourages the participant to attend to events and locations in a home environment. The work has been part of the of the European project LIREC (http://lirec.eu/project).

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Autonomous Robot Soccer | Through the Wormhole with Morgan Freeman

Author  Dennis Hong

Video ID : 209

This video shows some of the first autonomous soccer playing robots. The research is a stepping stone to interconnected robot societies.

Swarm robotics at CU-Boulder

Author  Dustin Reishus, Nicholas Farrow

Video ID : 214

Researchers at the University of Colorado, Boulder, are developing a swarm of intelligent robots that can work together to perform tasks, such as containing an oil spill or building a space station.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

OctArms I-V

Author  Ian Walker

Video ID : 158

Video showing five different iterations of the OctArm continuum manipulator.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Autonomous orchard vehicle for specialty-crop production

Author  Sanjiv Singh, Marcel Bergerman

Video ID : 91

In the United States, production of specialty crops (fruits and vegetables, tree nuts, dried fruits and horticulture and nursery crops, including floriculture) is very labor-intensive. The autonomous orchard vehicle presented in this video can be used year-round to automate tasks such as mowing, spraying, scouting for disease or insects, and estimating crop yield; or to augment humans for pruning, thinning, training trees, placing pheromone dispensers, and harvesting. Studies by the extension teams at The Pennsylvania and Washington State Universities report an increase in efficiency of up to 116% when workers perform operations on the upper part of trees onboard the vehicle, as compared to workers using ladders.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Reproduction of dishwasher-unloading task based on task-precedence graph

Author  Michael Pardowitz, Raoul Zöllner, Steffen Knoop, Tamim Asfour, Kristian Regenstein, Pedram Azad, Joachim Schröder, Rüdiger Dillmann

Video ID : 103

ARMAR-III humanoid robot reproducing the task of unloading a dishwasher, based on a task precedence graph learned from demonstrations. References: 1) T. Asfour, K. Regenstein, P. Azad, J. Schroeder, R. Dillmann: ARMAR-III: A humanoid platform for perception-action integration, Int. Workshop Human-Centered Robotic Systems (HCRS)(2006); 2) M. Pardowitz, R. Zöllner, S. Knoop, R. Dillmann: Incremental learning of tasks from user demonstrations, past experiences and vocal comments, IEEE Trans. Syst. Man Cybernet. B37(2), 322–332 (2007); URL: https://www.youtube.com/user/HumanoidRobots .

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A robot that provides a direction based on the model of the environment

Author  Takayuki Kanda

Video ID : 259

The video shows a scene of direction-giving interaction. The robot communicates the way to reach the destination with pointing in the direction to go. This interaction is supported with its capability to understand the environment. That is, the robot possesses the model of the environment, like a geographical map, topology, and landmarks from a first-person perspective, the so called route-perspective model.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Robotic wheelchair: Autonomous navigation with Google Glass

Author  Personal Robotics Group - OSU

Video ID : 709

For people with extreme disabilities such as ALS or quadriplegia, it is often hard to move about on their own and interact with their environments due to their immobility. Our work - nicknamed "Project Chiron" - attempts to alleviate some of this immobility with a kit that can be used on any Permobil-brand wheelchair.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobot D4 "The woodworking assistant"

Author  Martin Haegele

Video ID : 266

Video of demonstrator D4 of SMErobot - The European Robot Initiative for Strengthening the Competitiveness of SMEs in Manufacturing: "The woodworking assistant / Der Schreinerei-Assistent" SMErobot was an Integrated Project within the 6th Framework Programme of the EC to create a new family of SME-suitable robots and to exploit its potentials for competitive SME manufacturing (March 2005 - May 2009). For more details on the project and this welding robot, please also watch the "SMErobot video Coffee Break (English)" with Video ID: 261 as well as the "SMErobot Final Project Video" with Video ID: 262 or visit the respective demonstrator website: http://www.smerobot.org/04_demonstrations/#d4