View Chapter

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Visual navigation of mobile robot with pan-tilt camera

Author  Dario Floreano

Video ID : 36

A mobile robot with a pan-tilt camera is asked to to navigate in a square arena with low walls and located in an office.

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

From knowledge grounding to dialogue processing

Author  Séverin Lemaignan, Rachid Alami

Video ID : 705

This 2012 video documents the entire process of perspective-aware knowledge acquisition, knowledge representation and storage, and dialogue understanding. It demonstrates several examples of the natural interaction of a human with a PR2 robot, including speech recognition and action execution.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Controlled flight of a biologically-inspired, insect-scale robot

Author  Robert J. Wood

Video ID : 399

The Harvard Microrobotics Lab has demonstrated the first controlled flight of an insect-sized, flapping-wing robot. This video shows the 80 mg, piezoelectrically actuated robot achieving hovering flight and performing a simple lateral maneuver. Power and control signals are provided via wire tether. This work was funded by the NSF and the Wyss Institute.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Twendy-One demo

Author  WASEDA University, Sugano Laboratory

Video ID : 623

The video shows the Twendy-One robot from the WASEDA University Sugano Laboratory performing several tasks in personal care including sitting-up motion support, transferring the care-receipient safely onto a wheelchair, or giving support during breakfast preparation. The acoustic communication between human and robot is extended by the possibility of haptic instructions.

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Pedestrian detection

Author  Alberto Broggi, Alexander Zelinsky, Ümit Ozgüner, Christian Laugier

Video ID : 839

This video demonstrates pedestrian detection using stereo vision to achieve robustness.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Human-robot teaming in a search-and-retrieve task

Author  Cynthia Breazeal

Video ID : 555

This video shows an example from a human participant study examining the role of nonverbal social signals on human-robot teamwork for a complex search-and-retrieve task. In a controlled experiment, we examined the role of backchanneling and task complexity on team functioning and perceptions of the robots’ engagement and competence. Seventy three participants interacted with autonomous humanoid robots as part of a human-robot team: One participant, one confederate (a remote operator controlling an aerial robot), and three robots (2 mobile humanoids and an aerial robot). We found that, when robots used backchanneling, team functioning improved and the robots were seen as more engaged.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

More complex robots evolve in more complex environments

Author  Josh Bongard

Video ID : 772

This set of videos demonstrates that complex environments influence the evolution of robots with more complex body plans.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Calibration of ABB's IRB 120 industrial robot

Author  Ilian Bonev

Video ID : 422

The video depicts the process for the geometric calibration of the 6 DOF IRB 120. The calibration is based on the measurement of the position and the orientation of a tool using the laser tracking system from FARO. The video shows in sequence the steps in the acquisition of various configurations which can then be be employed using an algorithm similar to that of Sect. 6.2.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Aiko obstacle-aided locomotion

Author  Pål Liljebäck

Video ID : 253

Video of Aiko snake robot developed at the Norwegian University of Science and Technology (NTNU)/SINTEF Advanced Robotics Laboratory. In this video the robot uses obstacles to propel itself.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Lokomat

Author  Hocoma, A.G.

Video ID : 503

The Lokomat was one of the first robotic gait-training devices and is now one of the most widely-used robotic therapy devices.