View Chapter

Chapter 35 — Multisensor Data Fusion

Hugh Durrant-Whyte and Thomas C. Henderson

Multisensor data fusion is the process of combining observations from a number of different sensors to provide a robust and complete description of an environment or process of interest. Data fusion finds wide application in many areas of robotics such as object recognition, environment mapping, and localization.

This chapter has three parts: methods, architectures, and applications. Most current data fusion methods employ probabilistic descriptions of observations and processes and use Bayes’ rule to combine this information. This chapter surveys the main probabilistic modeling and fusion techniques including grid-based models, Kalman filtering, and sequential Monte Carlo techniques. This chapter also briefly reviews a number of nonprobabilistic data fusion methods. Data fusion systems are often complex combinations of sensor devices, processing, and fusion algorithms. This chapter provides an overview of key principles in data fusion architectures from both a hardware and algorithmic viewpoint. The applications of data fusion are pervasive in robotics and underly the core problem of sensing, estimation, and perception. We highlight two example applications that bring out these features. The first describes a navigation or self-tracking application for an autonomous vehicle. The second describes an application in mapping and environment modeling.

The essential algorithmic tools of data fusion are reasonably well established. However, the development and use of these tools in realistic robotics applications is still developing.

AnnieWay

Author  Thomas C. Henderson

Video ID : 132

This is a video showing the multisensor autonomous vehicle merging into traffic.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Stenting deployment system

Author  Nabil Simaan

Video ID : 248

A 3-DOF continuum robot for intraocular dexterity and stent placement. The video shows a stent being deployed in a choroallantoic chick membrane which represents the vasculature of the retina [1, 2]. Note that [1] reports an algorithm for assisted telemanipulation and force sensing at the tip of a guide wire using a rapid interpolation map by elliptic integrals. References: [1] W. Wei, N. Simaan: Modeling, force sensing, and control of flexible cannulas for microstent delivery, J. Dyn. Syst. Meas. Control 134(4), 041004 (2012); [2] W. Wei, C. Popplewell, H. Fine, S. Chang, N. Simaan: Enabling technology for micro-vascular stenting in ophthalmic surgery, ASME J. Med. Dev. 4(2), 014503-01 - 014503-06 (2010)

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Bozena 5 remotely-operated robot vehicle

Author  James P. Trevelyan

Video ID : 574

This is an example of several videos available on YouTube showing this Slovak-designed and -constructed machine. It shows the vehicle being used in different test areas with brief glimpses of other mine-resistant vehicles. BOZENA 5 was designed to support mine-clearance teams operating in Croatia, Serbia and Bosnia Herzegovina, removing mines left over from the civil war in the 1990s. In the areas affected by mines, one of the biggest challenges is the rapid growth of vegetation during the summer months. Bare ground can be submerged in vegetation over 1 m high after just two or three weeks. Military defensive positions were often set up on uneven ground with steep slopes which were then mined to deter attacks from other parties in the conflict. Mines were also removed from these defensive minefields and re-laid along routes used for smuggling goods and people. The smugglers would be able to charge higher prices because only they knew how to safely move along the routes. The smuggling routes (and their parent organizations) persisted long after the end of the formal conflict, complicating mine-clearance operations. That is why small, remote control vehicles like this proved to be so effective. They were highly manoeuvrable, easily transported, adaptable with different tools and equipment, and could be safely operated. The machine comes with an armored operator cabin and the whole system can be packed and deployed from a 40-foot shipping container weighing 16 tons. The greatest threat to the de-miners was from bounding fragmentation mines which typically had a lethal radius of several hundred meters. These vehicles provided a means to operate safely in areas affected by these mines. One of the major disadvantages of these machines is the destruction of surface vegetation that can lead to rapid erosion, if there is heavy rain in the weeks following mine clearance operations. Sudden heavy downpours are common in summer months. Therefore, they had to be used with considerable discretion and local knowledge.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR telepresence demo with time delay

Author  Jordi Artigas, Gerd Hirzinger

Video ID : 338

Video demonstration of the behavior of telepresence with force reflection up to 500 ms round-trip delay.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

IBVS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 59

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and a desired interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.2.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Cockroach-like hexapod

Author  Roger D. Quinn

Video ID : 521

A biologically inspired insect-like hexapod developed by Dr. Nelson, Dr. Bachmann, Dr. Quinn, Dr. Watson and Dr. Ritzmann.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Single- and dual-arm supervisory and shared control

Author  Paul S. Schenker, Antal K. Bejczy, Won S. Kim

Video ID : 299

This video shows single- and dual-arm supervisory and shared teleoperation control for the remote repair of solar panels attached to a space satellite.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR ROTEX: The first remotely-controlled space robot

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 330

Remotely-controlled space robot ROTEX in the Spacelab D2 mission flown with Shuttle Columbia in April 1993. Among the highlights of the experiment were the verification of shared autonomy when opening a bayonet closure and the fully autonomous grasping of a free-flying object with 6 s round-trip delay.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

“Sukura” robot developed for reconnaissance missions inside nuclear reactor buildings

Author  James P. Trevelyan

Video ID : 584

This video shows a robot "Sakura" or "Cherry Blossom" developed by researchers at the Chiba Institute of Technology, creators of the successful "Quince" robot.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Torque-control strategies for snake robots

Author  David Rollinson, Kalyan Vasudev Alwala, Nico Zevallos, Howie Choset

Video ID : 392

This video provides an overview of some initial torque-based motions for the series elastic snake robot (SEA Snake). Because the SEA Snake has the unique ability to accurately sense and control the torque of each of its joints, it can execute life-like compliant and adaptive motions, without a complex controller or tactile sensing.