View Chapter

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Hampton Robotics Club

Author  cscsteam

Video ID : 239

A documentary which follows the very successful Hampton Robotics Club and their devotion to the popular activity Botball. Submitted to the 2014 i5 Film Competition by Hampton High School.

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Robotic secrets revealed, Episode 1

Author  Greg Trafton

Video ID : 129

A Naval Research Laboratory (NRL) scientist shows a magic trick to a mobile-dextrous-social robot, demonstrating the robot's use and interpretation of gestures. The video highlights recent gesture-recognition work and NRL's novel cognitive architecture, ACT-R/E. While set within a popular game of skill, this video illustrates several Navy-relevant issues, including computational cognitive architecture which enables autonomous function, and integrates perceptual information with higher-level cognitive reasoning, gesture recognition for shoulder-to-shoulder human-robot interaction, and anticipation and learning on a robotic system. Such abilities will be critical for future, naval, autonomous systems for persistent surveillance, tactical mobile robots, and other autonomous platforms.

Chapter 75 — Biologically Inspired Robotics

Fumiya Iida and Auke Jan Ijspeert

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biologicalmodels ofmotion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].

Dynamic-rolling locomotion of GoQBot

Author  Fumiya Iida, Auke Ijspeert

Video ID : 109

This video presents dynamic-rolling locomotion of a worm-like robot GoQBot. Unlike the other conventional soft robots that are capable of only slow motions, this platform exhibits fast locomotion by exploiting the flexible deformation of the body as inspired from nature.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Safety evaluation of lightweight robots

Author  Sami Haddadin

Video ID : 463

Inteview with Sami Haddadin on safety evaluation of lightweight robots (Discovery Channel interview "Daily Planet", January 9th, 2008)

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Bipedal humanoid robot: WABIAN

Author  Atsuo Takanishi

Video ID : 522

A human-sized bipedal humanoid robot developed by Prof. Hashimoto, Dr. Narita, Dr. Kobayashi, Prof. Takanishi, Dr. Yamaguchi, Prof. Dario, and Dr. Takanobu.

Chapter 1 — Robotics and the Handbook

Bruno Siciliano and Oussama Khatib

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and schools; robots fighting fires, making goods and products, saving time and lives. Robots today are making a considerable impact on many aspects of modern life, from industrial manufacturing to healthcare, transportation, and exploration of the deep space and sea. Tomorrow, robotswill be as pervasive and personal as today’s personal computers. This chapter retraces the evolution of this fascinating field from the ancient to themodern times through a number of milestones: from the first automated mechanical artifact (1400 BC) through the establishment of the robot concept in the 1920s, the realization of the first industrial robots in the 1960s, the definition of robotics science and the birth of an active research community in the 1980s, and the expansion towards the challenges of the human world of the twenty-first century. Robotics in its long journey has inspired this handbook which is organized in three layers: the foundations of robotics science; the consolidated methodologies and technologies of robot design, sensing and perception, manipulation and interfaces, mobile and distributed robotics; the advanced applications of field and service robotics, as well as of human-centered and life-like robotics.

Robots — The journey continues

Author  Bruno Siciliano, Oussama Khatib, Torsten Kröger

Video ID : 812

Following the 2000 history video entitled robots, a 50 year journey (Video ID 805), this new collection brings some of the most influential robots and their applications developed since the turn of the new Millennium (2000 and 2016). The journey continues to illustrate the remarkable acceleration of the robotics field in the new century.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Robotic assembly of emergency-stop buttons

Author  Andreas Stolt et al.

Video ID : 358

The video presents a framework for dual-arm robotic assembly of stop buttons utilizing force/torque sensing under the fixture and force control.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm-Exos

Author  Massimo Bergamasco

Video ID : 148

The video details the Arm-Exos and, in particular, its capability for tracking the operator's motions and for rendering the contact forces in a simple, demonstrative, virtual environment.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Admittance control of a human-centered 3-DOF robotic arm using dfferential elastic actuators

Author  Marc-Antoine Legault, Marc-Antoine Lavoie, Francois Cabana, Philippe Jacob-Goudreau, Dominic Létourneau, François Michaud

Video ID : 610

This video shows the functionalities of a three-serial-DOF robotic arm where each DOF is actuated with a patent-pending differential elastic actuator (DEA). A DEA uses differential coupling between a high-impedance mechanical speed source and a low-impedance mechanical spring. A passive torsion spring (thus the name elastic), with a known impedance characteristic corresponding to the spring stiffness, is used, with an electrical DC brushless motor. A non-turning sensor connected in series with the spring measures the torque output of the actuator. Reference: M.-A. Legault, M.-A. Lavoie, F. Cabana, P. Jacob-Goudreau, D. Létourneau, F. Michaud: Admittance control of a human centered 3-DOF robotic arm using differential elastic actuators , Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Nice (2008), pp. 4143–4144; doi: 10.1109/IROS.2008.4651039.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

SLAM++: Simultaneous localization and mapping at the level of objects

Author  Andrew Davison

Video ID : 454

This video describes SLAM++, an object-based, 3-D SLAM system. Reference. R.F. Salas-Moreno, R.A. Newcombe, H. Strasdat, P.H.J. Kelly, A.J. Davison: SLAM++: Simultaneous localisation and mapping at the level of objects, Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, Portland (2013).