View Chapter

Chapter 59 — Robotics in Mining

Joshua A. Marshall, Adrian Bonchis, Eduardo Nebot and Steven Scheding

This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.

Autonomous haulage system

Author  Steven Scheding

Video ID : 145

This video shows the Autonomous Haulage System (AHS) implemented as part of Rio Tinto's Mine-of-the-Future initiative in North-Western Australia.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

KUKA LBR iiwa - Kinematic Redundancy

Author  KUKA Roboter GmbH

Video ID : 813

The video shows the robot dexterity achieved by kinematic redundancy and illustrates the basic concept of self-motion (here called null-space motion).

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Introduction

Author  Fiorella Operto

Video ID : 773

Introduction ton Ethical, Legal and Societal issues. This is the first time in history that humanity is nearing the achievement of replicating an intelligent and autonomous entity. This compels the scientific community to examine closely the very concept of intelligence – in humans and animals, and of the me- chanical – from a cybernetic standpoint. In fact, complex concepts like autonomy, learning, consciousness, evaluation, free will, decision making, freedom, emotions, and many others need to be analyzed, taking into account that the same concept may not have, in humans, animals, and machines, the same semantic meaning. From this standpoint, it can be seen as natural and necessary that robotics draws on several other disciplines, such as logic, linguistics, neuroscience, psychology, biology, physiology, philosophy, litera- ture, natural history, anthropology, art, and design. In fact, robotics de facto combines the so-called two cultural spheres, science and humanities. The effort to design roboethics should take into account this specificity. This means that experts will consider robotics as a whole - in spite of the current early stage which recalls a melting pot – so they can achieve the vision of robotics’ future. “Roboethics is an applied ethics whose objective is to develop scientific/cultural/technical tools that can be shared by different social groups and beliefs. These tools aim to promote and encourage the development of robotics for the advancement of human society and individuals, and to help preventing its misuse against humankind.” (Veruggio, 2002)

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

First recorded dive of the deep-sea ROV Hamire at a depth of 5,882 m

Author  Hyun-Taek Choi

Video ID : 796

This video shows the first deep-sea trial of the ROV Hamire developed by KRISO (Korea Research Institute of Ships and Ocean Engineering) at a depth of 5,882 m.

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Virtual whiskers - Highly responsive robot collision avoidance

Author  Thomas Schlegl, Torsten Kröger, Andre Gaschler, Oussama Khatib, Hubert Zangl

Video ID : 758

All mammals but humans use whiskers in order to rapidly acquire information about objects in the vicinity of the head. Collisions of the head and objects can be avoided as the contact point is moved from the body surface to the whiskers. Such a behavior is also highly desirable during many robot tasks such as for human-robot interaction. This video shows the use of novel capacitive proximity sensors so that robots can sense when they approach a human (or an object) and react before they actually collide with it. The sensors are flexible and thin so that they feature skin-like properties and can be attached to various robotic links and joint shapes. In comparison to capacitive proximity sensors, the proposed virtual whiskers offer better sensitivity towards small conductive as well as non-conductive objects. Equipped with the new proximity sensors, a seven-joint robot for human-robot interaction tasks demonstrates the efficiency and responsiveness in this video. Reference: T. Schlegl, T. Kröger, A. Gaschler, O. Khatib, H. Zangl: Virtual whiskers - Highly responsive robot collision avoidance, Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Tokyo (2013)

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

Home pool-cleaner review - Five types of robotic cleaners

Author  Erwin Prassler

Video ID : 739

Video presents a comparison of five commercial pool-cleaning robots from Dolphin, Baracuda, Kreepy Krauly, Hayward, and Gemini.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Camera control from gaze

Author  Fabien Spindler

Video ID : 702

Visual-servoing techniques consist of using the data provided by one or several cameras in order to control the motion of a robotic security or surveillance system. A large variety of positioning or target tracking tasks can be implemented by controlling from one to all degrees of freedom of the system.

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Active key-frame-based learning from demonstration

Author  Maya Cakmak, Andrea Thomaz

Video ID : 238

Simon asks different types of questions in response to demonstrations given by the teacher.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

Feedforward/feedback law for path tracking with a KUKA KR15/2 robot

Author  Michael Thümmel

Video ID : 136

This 2006 video shows the performance of a type of model-based feedforward (using the elastic joint model) plus state-feedback stabilization for trajectory tracking. Designed for an industrial KUKA KR15/2 manipulator having cycloidal gearboxes, which are known for their visco-elasticity, this controller is compared to a standard one for the robot task of moving in a rest-to-rest mode along three (orthogonal) square paths in Cartesian space. References: 1. M. Thümmel: Modellbasierte Regelung mit nichtlinearen inversen Systemen und Beobachtern von Robotern mit elastischen Gelenken, Dissertation, Technische Universität München, Munich, (2006) (in German); 2. A. De Luca, D. Schröder, M. Thümmel: An acceleration-based state observer for robot manipulators with elastic joints, IEEE Int. Conf. Robot. Autom. (ICRA), Rome (2007), pp. 3817-3823, 2007. doi: 10.1109/ROBOT.2007.364064

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Passive teleoperation of a nonlinear telerobot with tool-dynamics rendering

Author  Dongjun Lee

Video ID : 74

This is a video showing the passive teleoperation of nonlinear master-slave robots using passive decomposition, which enables master-slave coordination, apparent inertia scaling, and tool-dynamics rendering.