View Chapter

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

UAV stabilization, mapping and obstacle avoidance using VI-Sensor

Author  Skybotix AG

Video ID : 689

The video depicts UAV stabilization, mapping and obstacle avoidance using the Skybotix--Autonomous Systems Lab VI-Sensor - on-board and realtime. The robot is enabled with assisted teleoperation without line of sight and without the use of GPS during the ICARUS trials in Marche-En-Famenne.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Shadow Robot Company arm with Hand C5

Author  Shadow Robot Company

Video ID : 647

Fig. 4.23a Applications of pneumatic actuator: robot hand and arm with artificial muscle (Shadow Robot Company).

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Modsnake pipe inspection

Author  Howie Choset

Video ID : 167

Video of the CMU Modsnake inspecting a residential pipe network in Pittsburgh, PA.

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

Google's Project Tango

Author  Google, Inc.

Video ID : 120

Google's Project Tango has been collaborating with robotics laboratories from around the world to synthesize the past decade of research and computer vision into the development of a new class of mobile devices. This video contains one of the first public announcements and presentations of a device that can be used for multiple robot-perception applications described in this chapter.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Calibration and accuracy validation of a FANUC LR Mate 200iC industrial robot

Author  Ilian Bonev

Video ID : 430

This video shows excerpts from the process of calibrating a FANUC LR Mate 200iC industrial robot using two different methods. In the first method, the position of one of three points on the robot end-effector is measured using a FARO laser tracker in 50 specially selected robot configurations (not shown in the video). Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean positioning error after calibration was found to be 0.156 mm, the standard deviation (std) 0.067 mm, the mean+3*std 0.356 mm, and the maximum 0.490 mm. In the second method, the complete pose (position and orientation) of the robot end-effector is measured in about 60 robot configurations using an innovative method based on Renishaw's telescoping ballbar. Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean position error after calibration was found to be 0.479 mm, the standard deviation (std) 0.214 mm, and the maximum 1.039 mm. However, if we limit the zone for validations, the accuracy of the robot is much better. The second calibration method is less efficient but relies on a piece of equipment that costs only $12,000 (only one tenth the cost of a laser tracker).

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Autonomous utility vehicle - R Gator

Author  John Reid

Video ID : 93

The John Deere R Gator is an unmanned ground vehicle capable of operating in urban and off-road terrain with a large payload capacity to carry supplies or a marsupial robot. The R Gator can operate in teleoperation mode, waypoint navigation, direction drive, and path playback. The perception system on the vehicle is able to detect both positive and negative (holes) obstacles in off-road terrain and is capable of driving through tall vegetation while maintaining safety. The remote operator is able to send commands to the R Gator wirelessly, through an intuitive, video game-style, wearable interface, and can see video and telematics from the R Gator in a heads-up display. This video shows the R Gator performing various missions in off-road terrain in a surrogate agricultural environment. Screen shots from the operator display are shown, including an overhead map with waypoint path visible, video views available to the operator, and telematics. The video also shows the R Gator detecting and avoiding fence posts and a negative obstacle, both of which are quite common in orchards.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

L-Exos for upper-limb motor rehabilitation

Author  Massimo Bergamasco

Video ID : 180

The video shows the L-Exos integrated into a virtual environment, which has been specifically developed for the motor rehabilitation of the upper limb.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

Autonomous orchard vehicle for specialty-crop production

Author  Sanjiv Singh, Marcel Bergerman

Video ID : 91

In the United States, production of specialty crops (fruits and vegetables, tree nuts, dried fruits and horticulture and nursery crops, including floriculture) is very labor-intensive. The autonomous orchard vehicle presented in this video can be used year-round to automate tasks such as mowing, spraying, scouting for disease or insects, and estimating crop yield; or to augment humans for pruning, thinning, training trees, placing pheromone dispensers, and harvesting. Studies by the extension teams at The Pennsylvania and Washington State Universities report an increase in efficiency of up to 116% when workers perform operations on the upper part of trees onboard the vehicle, as compared to workers using ladders.

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Interactive, human-robot supervision test with the long-range science rover for Mars exploration

Author  Samad Hayati, Richard Volpe, Paul Backes, J. (Bob) Balaram, Richard Welch, Robert Ivlev, Gregory Tharp, Steve Peters, Tim Ohm, Richard Petras

Video ID : 187

This video records a demonstration of the long-range rover mission on the surface of Mars. The Mars rover, the test bed Rocky 7, performs several demonstrations including 3-D terrain mapping using the panoramic camera, telescience over the internet, an autonomous mobility test, and soil sampling. This demonstration was among the preliminary tests for the Mars Pathfinder mission executed in 1997.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Underactuated adaptive gripper using flexural buckling

Author  Gwang-Pil Jung, Je-Sung Koh, Kyu-Jin Cho

Video ID : 409

Biologically-inspired gripper. The scalable design enables the manufacture of various sizes of the gripper. Flexure buckling provides the adaptability to grip objects of various shapes. Its differential mechanism has no wires and linkages.