View Chapter

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Full-body, compliant humanoid COMAN

Author  Department of Advanced Robotics, Istituto Italiano di Tecnologia

Video ID : 624

The video shows different characteristics of the compliant humanoid (COMAN) which is developed by the Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), i.e.: i) fully torque controlled, ii) compliant human-robot interaction, iii) joint impedance control, iv) exploration of natural dynamics, v) robust stabilization control including disturbance rejection;and vi) adaption to inclined terrain.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning from failure I

Author  Aude Billard

Video ID : 476

This video illustrates how learning from demonstration can be bootstrapped using failed demonstrations only (in place of traditional approaches that use successful demonstrations). The algorithm is described in detail in two publications: 1)D.-H. Grollman, A. Billard: Donut as I do: Learning from failed demonstrations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai (2011) Best Paper Award (Cognitive Robotics); 2) D.-H. Grollman, A. Billard: Robot learning from failed demonstrations, Int. J. Social Robot. 4(4), 331-342 (2012).

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System: Punching holes

Author  Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon, Markus Grebenstein, Oliver Eiberger, Werner Friedl, Hannes Höppner, Dominic Lakatos, Daniel Leidner, Florian Petit, Jens Reinecke, Sebastian Wolf, Tilo Wüsthoff

Video ID : 546

The DLR Hand Arm System uses a tool to punch holes into a business card. The passive flexibility in the variable stiffness actuators (VSA) helps to keep a stable grasp during the impact and protects the hardware from damage. The movement is realized by cyclic motion control and a learning algorithm to improve the accuracy of the holes.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Passivity of IPC strategy at 30-Hz sample rate

Author  Stefano Stramigioli

Video ID : 724

In this short video, the effectiveness of the passive sampling approach and IPC control are shown. A "PD" like control is implemented digitally in the classical way and also using IPC and passive sampling. At the used sampling frequency of 30 Hz, it is shown that instability occurs for the standard implementation, but is completely absent in the proposed way.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

BONES and SUE exoskeletons for robotic therapy

Author  Julius Klein, Steve Spencer, James Allington, Marie-Helene Milot, Jim Bobrow, David Reinkensmeyer

Video ID : 498

BONES is a 5-DOF, pneumatic robot developed at the University of California at Irvine for naturalistic arm training after stroke. It incorporates an assistance-as-needed algorithm that adapts in real time to patient errors during game play by developing a computer model of the patient's weakness as a function of workspace location. The controller incorporates an anti-slacking term. SUE is a 2-DOF pneumatic robot for providing wrist assistance. The video shows a person with a stroke using the device to drive a simulated motor cycle through a simulated Death Valley.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Biological bat-ear deformation in sonar detection

Author  Rolf Mueller

Video ID : 312

Fast deformations of the outer ear (pinnae) in a female Pratt's roundleaf bat (Hipposideros pratti). The deformations are shown at a speed 67 times slower than real time and occur synchronously with the emission of the biosonar pulses and the reception of the echoes. These changes in the pinnae give the biosonar of roundleaf bats a dynamic dimension that is not found in technical sonar.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Mobile-robot navigation system in outdoor pedestrian environment

Author  Chin-Kai Chang

Video ID : 711

We present a mobile-robot navigation system guided by a novel vision-based, road-recognition approach. The system represents the road as a set of lines extrapolated from the detected image contour segments. These lines enable the robot to maintain its heading by centering the vanishing point in its field of view, and to correct the long-term drift from its original lateral position. We integrate odometry and our visual, road-recognition system into a grid-based local map which estimates the robot pose as well as its surroundings to generate a movement path. Our road recognition system is able to estimate the road center on a standard dataset with 25 076 images to within 11.42 cm (with respect to roads that are at least 3 m wide). It outperforms three other state-of-the-art systems. In addition, we extensively test our navigation system in four busy campus environments using a wheeled robot. Our tests cover more than 5 km of autonomous driving on a busy college campus without failure. This demonstrates the robustness of the proposed approach to handle challenges including occlusion by pedestrians, non-standard complex road markings and shapes, shadows, and miscellaneous obstacle objects.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Landing and perching UAV

Author  Alexis L. Desbiens, Alan T. Asbeck , Mark R. Cutkosky

Video ID : 412

This UAV uses microspines to engage with asperities on the surface and has a tuned suspension to absorb impact forces.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR GETEX manipulation experiments on ETS-VII

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 332

This is a video record of the remote control of the first free-flying space robot ETS-VII from the DLR ground control station in Tsukuba, done in close cooperation with Japan’s NASDA (today’s JAXA). The video shows a visual-servoing task in which the robot moves autonomously to a reference position defined by visual markers placed on the experimental task board. In view are the true camera measurements (top left, end-effector camera; top right, side camera), the control room in the ground control station (bottom left), and the robot simulation environment (bottom right), which was used as a predictive simulation tool.

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Driver fatigue and inattention

Author  Alberto Broggi, Alexander Zelinsky, Ümit Ozgüner, Christian Laugier

Video ID : 840

This video demonstrates real-time driver inattention and distraction, including that caused fatigue. The system uses a monocular vision system and infrared pods to achieve robust operation in all lighting conditions.