View Chapter

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Essex series robotic fish

Author  Jindong Liu, Huosheng Hu

Video ID : 431

These are Essex autonomous robotic fish tested in a public fish tank in the London Aquarium. The video was captured during preparations for unveiling the World's first autonomous robotic fish in 2006. It was reported by BBC and other news outlets. There are three motors on the tail joint. The skin is cosmetic and water flooded. The various models are labelled G6 , G8, andG9. This video shows how a "fish" detects the tank wall and other "fish" by IR sensors and changes its path to avoid collision.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved homing walk on rough ground

Author  Phil Husbands

Video ID : 373

Evolved, simulated hexapod walks over rough terrain while homing on a beacon. This behavior was incrementally evolved with the controlling neural-network architecture which was expanding at each stage. Work done at Sussex University by Eric Vaughan.

Chapter 75 — Biologically Inspired Robotics

Fumiya Iida and Auke Jan Ijspeert

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biologicalmodels ofmotion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].

Dynamic-rolling locomotion of GoQBot

Author  Fumiya Iida, Auke Ijspeert

Video ID : 109

This video presents dynamic-rolling locomotion of a worm-like robot GoQBot. Unlike the other conventional soft robots that are capable of only slow motions, this platform exhibits fast locomotion by exploiting the flexible deformation of the body as inspired from nature.

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Military robotics

Author  Fiorella Operto

Video ID : 775

Ethical, legal and societal issues in military robotics. The so-called field of military robotics comprises all the devices resulting from the development of the traditional systems by robotics technology: Integrated defense systems; and A.I. systems for intelligence and surveillance controlling weapons and aircraft capabilities. Unmanned ground vehicles (UGVs), or autonomous tanks: Armored vehicles carrying weapons and/or tactical payloads, intelligent bombs and missiles. UAVs (unmanned aerial vehicles): also referred to as autonomous flying vehicles (AFVs) or drones, unmanned spy planes and remotely piloted bombers. ASV (autonomous surface vessels) and patrol boats. AUVs (autonomous underwater vehicles): Intelligent torpedoes and autonomous submarines. In this field, the main problems could arise from: inadequate management of the unstructured complexity of a hostile scenario; the unpredictability of machine behavior; the increased risk of starting a video-game-like war, due to the decreased perception of its deadly effects; unpredictable side-effects on civilian populations; human-in-control hierarchy and robot’s transparency; psychological issues of humans in robotized environments (mixed teams); accountability and responsibility gap; the assignment of liability for misbehaviors or crimes. Collateral damages: Despite the increasing success of this technology, military hierarchies feel concerned about the potential dangers. Drones can accidentally fall and possibly damage humans and objects. Daily news report about unintended injury or death of innocent non-combatants (usually known as “collateral damage”) from war theaters. Potential friendly-fire casualties in crowded battlefield or due to enemy’s tracking/hijacking.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Binary-manipulator object recovery

Author  Greg Chirikjian

Video ID : 164

Video of Greg Chirikjian's binary manipulator performing an object retrieval task for satellite-recovery applications.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Admittance control of a human-centered 3-DOF robotic arm using dfferential elastic actuators

Author  Marc-Antoine Legault, Marc-Antoine Lavoie, Francois Cabana, Philippe Jacob-Goudreau, Dominic Létourneau, François Michaud

Video ID : 610

This video shows the functionalities of a three-serial-DOF robotic arm where each DOF is actuated with a patent-pending differential elastic actuator (DEA). A DEA uses differential coupling between a high-impedance mechanical speed source and a low-impedance mechanical spring. A passive torsion spring (thus the name elastic), with a known impedance characteristic corresponding to the spring stiffness, is used, with an electrical DC brushless motor. A non-turning sensor connected in series with the spring measures the torque output of the actuator. Reference: M.-A. Legault, M.-A. Lavoie, F. Cabana, P. Jacob-Goudreau, D. Létourneau, F. Michaud: Admittance control of a human centered 3-DOF robotic arm using differential elastic actuators , Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Nice (2008), pp. 4143–4144; doi: 10.1109/IROS.2008.4651039.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

HAMR3: An autonomous 1.7 g ambulatory robot

Author  Andrew T. Baisch, Christian Heimlich, Michael Karpelson, Robert J. Wood

Video ID : 406

The successor to HAMR2, HAMR3 is a cockroach-inspired robot developed at the Harvard Microrobotics Lab by Andrew Baisch, Christian Heimlich, Michael Karpelson and Robert J. Wood. This version of the robot includes fully-integrated, onboard power electronics.

A new form of peristaltic locomotion in a robot

Author  Alexander Boxerbaum

Video ID : 287

This robotic concept uses a braided mesh that can be continuously deformed to create smooth waves of motion. The improvements in kinematics result in a much faster and effective motion.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Task-consistent, obstacle avoidance for mobile manipulation

Author  Oliver Brock, Oussama Khatib, Sriram Viji

Video ID : 784

This robot can avoid moving obstacles with real-time path modification by using an elastic-strip framework. However, the real-time path modification can interfere with task execution. The proposed task-consistent, elastic planning method can ensure the task execution while achieving obstacle avoidance.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Using ROS4iOS

Author  François Michaud

Video ID : 419

Demonstration of the integration, using HBBA (hybrid behaviour-based architecture), of navigation, remote localization, speaker identification, speech recognition and teleoperation. The scenario employs the ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition. Reference: F. Ferland, R. Chauvin, D. Létourneau, F. Michaud: Hello robot, can you come here? Using ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition, Proc. Int. ACM/IEEE Conf. Human-Robot Interaction (2014), p. 101