View Chapter

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Elements of cooperative behavior in autonomous mobile robots

Author  David Jung, Gordon Cheng, Alexander Zelinsky

Video ID : 200

Two robots are used to demonstrate cooperative behavior with the application of cleaning. One robot sweeps particles along a wall into a pile, and the other robot uses a vacuum to clean up the pile. The robot with the vacuum tracks the location of the sweeping robot to find where the pile of particles has been left.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A scene of deictic interaction

Author  Takayuki Kanda

Video ID : 807

This video illustrates the "deictic interaction" in which the robot and a user interact using pointing gestures and verbal-reference terms. The robot has a capability to understand the user's deictic interaction recognizing both the pointing gesture and the reference term. In addition, there is a 'facilitation' mechanism (e.g., the robot engages in real-time joint attention), which makes the interaction smooth and natural.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Regrasp planning for pivoting manipulation by a humanoid robot

Author  Eiichi Yoshida

Video ID : 599

The pivoting manipulation presented in video 597 is extended for the humanoid robot to carry a bulky object in a constrained environment. Using multiple roadmaps with different grasping positions and free walking motions, the humanoid robot can set down the object near narrow places and then regrasp it from another position to move the object to the goal.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

B-scan image of indoor potted tree using multipulse sonar

Author  Roman Kuc

Video ID : 315

By repeatedly clearing the conventional sonar ranging board, each echo produces a spike sequence that is related to the echo amplitude. A brightness-scan (B-scan) image - similar to diagnostic ultrasound images - is generated by transforming the short-term spike density into a gray scale intensity. The video shows a B-scan of a potted tree in an indoor environment containing a doorway (with door knob) and a tree located in front of a cinder-block wall. The B-scan shows the specular environmental features as well as the random tree-leaf structures. Note that the wall behind the tree is also clearly imaged. Reference: R. Kuc: Generating B-scans of the environment with a conventional sonar, IEEE Sensor. J. 8(2), 151 - 160 (2008); doi: 10.1109/JSEN.2007.908242 .

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Reducing uncertainty in robotics surface-assembly tasks

Author  Jing Xiao et al.

Video ID : 356

This video demonstrates how surface assembly strategies with pose estimation can be used to overcome pose uncertainties. The assembly path is updated based on the newly estimated values of parameters after the compliant exploratory move. In this way, the robot is able to successfully overcome disparities between the nominal and the actual poses of the objects to accomplish the assembly. No force sensor is used.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System smashed with baseball bat

Author  Sebastian Wolf, Oliver Eiberger, Gerd Hirzinger

Video ID : 461

The DLR Hand Arm System is equipped with variable stiffness actuators (VSA). In this demonstration of robustness, the arm resists the impact of a baseball bat.

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

SHAKEY: Experimentation in robot learning and planning (1969)

Author  Peter Hart, Nils Nilsson

Video ID : 704

SRI's robot Shakey (built 1966-1972) was the first mobile robot that could reason about its surroundings. This 1969 movie provides a good look at how Shakey worked.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

RDP experimental results

Author  Nabil Simaan

Video ID : 247

Demonstrates a prototype system for transurethral bladder cancer resection. This robot has a 5 mm snake with two segments and three working channels including a custom-made fiberscope, laser ablation and a gripper [1-3]. References: [1] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: A pilot ex-vivo evaluation of a telerobotic system for transurethral intervention and surveillance, The 5th Hamlyn Symp. Medical Robotics (2012), pp. 3-4; [2] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 5817-5822; [3] R. E. Goldman, A. Bajo, L. S. MacLachlan, R. Pickens, S. D. Herrell, N. Simaan: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Trans. Biomed. Eng. 60(4), 918-925 (2013)

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Jean Vertut master-slave manipulator arms

Author  James P. Trevelyan

Video ID : 590

Jean Vertut (http://cyberneticzoo.com/teleoperators/1970-2-virgule-remote-controlled-manipulator-jean-vertut-french/), a French engineer, is widely credited with the best and most popular designs for remotely-operated manipulators used in the nuclear industry. Research on devices for nuclear applications is described in the chapter. Here are some other reference links: http://robotics.me.utexas.edu/index.html - research group working on robots for hazardous environments. In this video, one watches the fully automatic Port-Deployed Glovebox Manipulator: Pick and Place in operation. Compare the speed and dexterity of this device with the 1950s era remotely controlled manipulator arms mentioned above. It is hard for automatic devices to even approach the speed of manually-controlled devices, even today after 60 years of robotics research and development.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

A day in the life of a Kiva robot

Author  Mick Mountz

Video ID : 210

Kiva Systems founder and CEO Mick Mountz narrates a play-by-play video of how Kiva robots automate a warehouse environment. http://www.kivasystems.com/