View Chapter

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

An assistive decision-and-control architecture for force-sensitive, hand-arm systems driven via human-machine interfaces (MM2)

Author  Jörn Vogel, Sami Haddadin, John D. Simeral, Daniel Bacher , Beata Jarosiewicz, Leigh R. Hochberg, John P. Donoghue, Patrick van der Smagt

Video ID : 620

This video shows a 2-D pick and place of an object using the Braingate2 neural interface. The robot is controlled through a multipriority Cartesian impedance controller, and its behavior is extended with collision detection and reflex reaction. Furthermore, virtual workspaces are added to ensure safety. On top of this, a decision-and-control architecture, which uses sensory information available from the robotic system to evaluate the current state of task execution, is employed.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

A single-motor-actuated, miniature, steerable jumping robot

Author  Jianguo Zhao, Jing Xu, Bingtuan Gao, Ning Xi, Fernando J. Cintron, Matt W. Mutka, Li Xiao

Video ID : 280

The contents of the video are divided into three parts. The first part illustrates the individual functions of the robot such as jumping, self-righting and steering. The second part demonstrates the robot's locomotion capability in indoor environments. Scenarios such as jumping from the floor, jumping in an office and jumping over stairs are included. The third part shows the robot's locomotion capability in outdoor environments. Experiments on uneven ground, ground with small gravels and ground with grass are included.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

ISAC: A demonstration

Author  Kazukiko Kawamura, Sugato Bagchi, Robert Todd Pack, Pabolo Martinez

Video ID : 614

At the Intelligent Robotics Laboratory of the Center for Intelligent Systems at Vanderbilt University, the authors developed a humanoid system called the Intelligent Soft-Arm Control. ISAC was originally developed for a robotic assistance system for the physically disabled.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR GETEX manipulation experiments on ETS-VII

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 332

This is a video record of the remote control of the first free-flying space robot ETS-VII from the DLR ground control station in Tsukuba, done in close cooperation with Japan’s NASDA (today’s JAXA). The video shows a visual-servoing task in which the robot moves autonomously to a reference position defined by visual markers placed on the experimental task board. In view are the true camera measurements (top left, end-effector camera; top right, side camera), the control room in the ground control station (bottom left), and the robot simulation environment (bottom right), which was used as a predictive simulation tool.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Intrinsically elastic robots: The key to human like performance (Best Video Award)

Author  Sami Haddadin, Felix Huber, Kai Krieger, Roman Weitschat, Alin Albu-Schäffer, Sebastian Wolf, Werner Friedl, Markus Grebenstein, Florian Petit, Jens Reinecke, Roberto Lampariello

Video ID : 475

The advantages of intrinsically elastic robots on their performance are shown by the examples of the DLR LWR III and the DLR Hand Arm System.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Autonomous navigation of a mobile vehicle

Author  Visp team

Video ID : 713

This video shows the vision-based autonomous navigation of a Cycab mobile vehicle able to avoid obstacles detected by its laser range finder. The reference trajectory is provided as a sequence of previously-acquired key images. Obstacle avoidance is based on a predefined set of circular avoidance trajectories. The best trajectory is selected when an obstacle is detected by the laser scanner.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

PBVS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 62

This video shows a PBVS on a 6-DOF robot arm with (c^t_o, theta u) as visual features. It corresponds to the results depicted in Figure 34.9.

Chapter 37 — Contact Modeling and Manipulation

Imin Kao, Kevin M. Lynch and Joel W. Burdick

Robotic manipulators use contact forces to grasp and manipulate objects in their environments. Fixtures rely on contacts to immobilize workpieces. Mobile robots and humanoids use wheels or feet to generate the contact forces that allow them to locomote. Modeling of the contact interface, therefore, is fundamental to analysis, design, planning, and control of many robotic tasks.

This chapter presents an overview of the modeling of contact interfaces, with a particular focus on their use in manipulation tasks, including graspless or nonprehensile manipulation modes such as pushing. Analysis and design of grasps and fixtures also depends on contact modeling, and these are discussed in more detail in Chap. 38. Sections 37.2–37.5 focus on rigid-body models of contact. Section 37.2 describes the kinematic constraints caused by contact, and Sect. 37.3 describes the contact forces that may arise with Coulomb friction. Section 37.4 provides examples of analysis of multicontact manipulation tasks with rigid bodies and Coulomb friction. Section 37.5 extends the analysis to manipulation by pushing. Section 37.6 introduces modeling of contact interfaces, kinematic duality, and pressure distribution and soft contact interface. Section 37.7 describes the concept of the friction limit surface and illustrates it with an example demonstrating the construction of a limit surface for a soft contact. Finally, Sect. 37.8 discusses how these more accurate models can be used in fixture analysis and design.

Programmable velocity vector fields by 6-DOF vibration

Author  Tom Vose, Matt Turpin, Philip Dames, Paul Umbanhowar, Kevin M. Lynch

Video ID : 804

This video generalizes the idea of transporting parts using horizontal and vertical vibration shown in the previous video and illustrated in Fig. 37.9 in Chap. 37.4.3 of the Springer Handbook of Robotics, 2nd ed (2016). In this video, a rigid supporting plate is vibrated with an arbitrary periodic 6-DOF motion profile. This periodic vibration enables control of the normal forces and horizontal plate velocities as a function of the position on the plate, effectively creating programmable velocity vector fields induced by friction. This video demonstrates five such velocity fields in sequence, each created by a different periodic vibration of the plate.

Chapter 49 — Modeling and Control of Wheeled Mobile Robots

Claude Samson, Pascal Morin and Roland Lenain

This chaptermay be seen as a follow up to Chap. 24, devoted to the classification and modeling of basic wheeled mobile robot (WMR) structures, and a natural complement to Chap. 47, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies.

The chapter is organized as follows. Section 49.2 is devoted to the choice of controlmodels and the determination of modeling equations associated with the path-following control problem. In Sect. 49.3, the path following and trajectory stabilization problems are addressed in the simplest case when no requirement is made on the robot orientation (i. e., position control). In Sect. 49.4 the same problems are revisited for the control of both position and orientation. The previously mentionned sections consider an ideal robot satisfying the rolling-without-sliding assumption. In Sect. 49.5, we relax this assumption in order to take into account nonideal wheel-ground contact. This is especially important for field-robotics applications and the proposed results are validated through full scale experiments on natural terrain. Finally, a few complementary issues on the feedback control of mobile robots are briefly discussed in the concluding Sect. 49.6, with a list of commented references for further reading on WMRs motion control.

Tracking of arbitrary trajectories with a truck-like vehicle

Author  Pascal Morin, Claude Samson

Video ID : 182

This is an animation showing the application of the transverse function approach for the tracking of an omnidirectional frame (in blue) with a nonholonomic truck-like robot. The robot is able to maintain bounded, tracking errors in both position and orientation despite the motion of the blue frame in arbitrary directions. The animation illustrates results presented in Chap. 49.4, Springer Handbook of Robotics, 2nd edn (2016).

Tracking of an omnidirectional frame with a unicycle-like robot

Author  Guillaume Artus, Pascal Morin, Claude Samson

Video ID : 243

This video shows an experiment performed in 2005 with a unicyle-like robot. A video camera mounted at the top of a robotic arm enabled estimation of the 2-D pose (position/orientation) of the robot with respect to a visual target consisting of three white bars. These bars materialized an omnidirectional moving frame. The experiment demonstrated the capacity of the nonholonomic robot to track in both position and orientation this ominidirectional frame, based on the transverse function control approach.