View Chapter

Chapter 49 — Modeling and Control of Wheeled Mobile Robots

Claude Samson, Pascal Morin and Roland Lenain

This chaptermay be seen as a follow up to Chap. 24, devoted to the classification and modeling of basic wheeled mobile robot (WMR) structures, and a natural complement to Chap. 47, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies.

The chapter is organized as follows. Section 49.2 is devoted to the choice of controlmodels and the determination of modeling equations associated with the path-following control problem. In Sect. 49.3, the path following and trajectory stabilization problems are addressed in the simplest case when no requirement is made on the robot orientation (i. e., position control). In Sect. 49.4 the same problems are revisited for the control of both position and orientation. The previously mentionned sections consider an ideal robot satisfying the rolling-without-sliding assumption. In Sect. 49.5, we relax this assumption in order to take into account nonideal wheel-ground contact. This is especially important for field-robotics applications and the proposed results are validated through full scale experiments on natural terrain. Finally, a few complementary issues on the feedback control of mobile robots are briefly discussed in the concluding Sect. 49.6, with a list of commented references for further reading on WMRs motion control.

Mobile robot control in off-road conditions and under high dynamics

Author  Roland Lenain

Video ID : 435

This video illustrates the motion-control strategy detailed in Chap. 49, Springer Handbook of Robotics, 2nd edn (2016), when the ideal rolling-without-sliding conditions are not met. In the two segments, the robot follows a previously recorded trajectory, using RTK GPS. The first segment illustrates the capabilities on uneven ground at low speed, while the second shows results at high speed. Accuracy within a few centimeters is obtained thanks to adaptive and predictive approaches, whereas accuracy close to 1 m in the first case and 5 m for the second case are observed using the rolling-without-sliding assumption.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

More complex robots evolve in more complex environments

Author  Josh Bongard

Video ID : 772

This set of videos demonstrates that complex environments influence the evolution of robots with more complex body plans.

Chapter 78 — Perceptual Robotics

Heinrich Bülthoff, Christian Wallraven and Martin A. Giese

Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.

Active in-hand object recognition

Author  Christian Wallraven

Video ID : 569

This video showcases the implementation of active object learning and recognition using the framework proposed in Browatzki et al. [1, 2]. The first phase shows the robot trying to learn the visual representation of several paper cups differing by a few key features. The robot executes a pre-programmed exploration program to look at the cup from all sides. The (very low-resolution) visual input is tracked and so-called key-frames are extracted which represent the (visual) exploration. After learning, the robot tries to recognize cups that have been placed into its hands using a similar exploration program based on visual information - due to the low-resolution input and the highly similar objects, the robot, however, fails to make the correct decision. The video then shows the second, advanced, exploration, which is based on actively seeking the view that is expected to provide maximum information about the object. For this, the robot embeds the learned visual information into a proprioceptive map indexed by the two joint angles of the hand. In this map, the robot now tries to predict the joint-angle combination that provides the most information about the object, given the current state of exploration. The implementation uses particle filtering to track a large number of object (view) hypotheses at the same time. Since the robot now uses a multisensory representation, the subsequent object-recognition trials are all correct, despite poor visual input and highly similar objects. References: [1] B Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active in-hand object recognition on a humanoid robot, IEEE Trans. Robot. 30(5), 1260-1269 (2014); [2] B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active object recognition on a humanoid robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 2021-2028.

Chapter 63 — Medical Robotics and Computer-Integrated Surgery

Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini and Paolo Dario

The growth of medical robotics since the mid- 1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robotsmay be classified in many ways: by manipulator design (e.g., kinematics, actuation); by level of autonomy (e.g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e.g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e.g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computerintegrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology ofmedical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

Magnetic and needlescopic instruments for surgical procedures

Author  Southwestern Center for Minimally Invasive Surgery, University of Texas, Dallas

Video ID : 828

Basic and complex procedures with magnetic and needlescopic instruments.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Raytheon Sarcos exoskeleton

Author  Sarcos

Video ID : 646

Fig. 4.22b Applications of hydraulic actuators to robot: Sarcos exoskeleton (Raytheon).

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

OctArms I-V

Author  Ian Walker

Video ID : 158

Video showing five different iterations of the OctArm continuum manipulator.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

The Arm Guide

Author  Lennie Kahn

Video ID : 494

The Arm Guide was an early rehabilitation therapy robot used to study the role of active assistance in robotic therapy after stroke, which was developed at the Rehabilitation Institute of Chicago and the University of California at Irvine. It was a singly-actuated, trombone-like device which could be oriented in different directions. It was used to sense patient's arm movement along a linear bearing and then assisted in completing movements with a motor attached to a timing belt along the bearing. It also measured off-axis forces generated against the linear bearing, using a 6-axis force-torque cell in order to quantify abnormal synergies.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Handling of a single object by multiple mobile robots based on caster-like dynamics

Author  Yasuhisa Hirata, Youhei Kume, Zhi-dong Wang, Kazuhiro Kosuge

Video ID : 193

This video focuses on how to handle a single object using the coordination actions of multiple mobile robots. Each robot is controlled based on caster dynamics. The maneuverability of the object can be changed based on the caster offset of each robot. Caster dynamics in the 3-D space is extended to the 2-D plane using a virtual 3-D caster.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Extracting kinematic background knowledge from interactions using task-sensitive, relational learning

Author  Sebastian Hofer, Tobias Lang, Oliver Brock

Video ID : 671

To successfully manipulate novel objects, robots must first acquire information about the objects' kinematic structure. We present a method to learn relational, kinematic, background knowledge from exploratory interactions with the world. As the robot gathers experience, this background knowledge enables the acquisition of kinematic world models with increasing efficiency. Learning such background knowledge, however, proves difficult, especially in complex, feature-rich domains. We present a novel, task-sensitive, relational-rule learner and demonstrate that it is able to learn accurate kinematic background knowledge in domains where other approaches fail. The resulting background knowledge is more compact and generalizes better than that obtained with existing approaches.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A robot that provides a direction based on the model of the environment

Author  Takayuki Kanda

Video ID : 259

The video shows a scene of direction-giving interaction. The robot communicates the way to reach the destination with pointing in the direction to go. This interaction is supported with its capability to understand the environment. That is, the robot possesses the model of the environment, like a geographical map, topology, and landmarks from a first-person perspective, the so called route-perspective model.