View Chapter

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Kuka LWR : Trajectory without load

Author  Maxime Gautier

Video ID : 482

This video shows a trajectory without load used to identify the dynamic parameters of the links, load and torque sensor gain of the Kuka LWR manipulator. Details and results are given in the papers: A. Jubien, M. Gautier, A. Janot: Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data, preprint 19th IFAC World Congress, Cape Town (2014) pp. 8391-8396, M. Gautier, A. Jubien: Force calibration of the Kuka LWR-like robots including embedded joint torque sensors and robot structure, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Chicago (2014) pp. 416-421

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Experiments of wheeled rovers in a sandbox covered with loose soil

Author  Field Robotics Group, Tohoku University

Video ID : 185

The lunar and Martian surfaces are covered with loose soil, and the wheels of rovers can get stuck on such surfaces. To avoid the problem, it is necessary to conduct thorough investigations into the contact and traction mechanics between the wheels and the soil. To this end, we conduct various experiments using wheeled rovers in a sandbox covered with loose soil. In the experiments, the slippage and sinkage of wheels with various geometries are measured. Based on these experimental observations, analysis and modelling of the motion behavior of wheels ensued.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Quadrupteron robot

Author  Clément Gosselin

Video ID : 52

This video demonstrates a 4-DOF partially decoupled scara-type parallel robot (Quadrupteron). References: 1. P.L. Richard, C. Gosselin, X. Kong: Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator, ASME J. Mech. Des. 129(6), 611-616 (2007); 2. X. Kong, C. Gosselin: Forward displacement analysis of a quadratic 4-DOF 3T1R parallel manipulator: The Quadrupteron, Meccanica 46(1), 147-154 (2011); 3. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Atlas whole-body grasping

Author  DRC Team MIT

Video ID : 651

A simple demonstration of automated perception, whole-body motion planning, and dynamic stabilization using Atlas and software developed at MIT.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

RDP experimental results

Author  Nabil Simaan

Video ID : 247

Demonstrates a prototype system for transurethral bladder cancer resection. This robot has a 5 mm snake with two segments and three working channels including a custom-made fiberscope, laser ablation and a gripper [1-3]. References: [1] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: A pilot ex-vivo evaluation of a telerobotic system for transurethral intervention and surveillance, The 5th Hamlyn Symp. Medical Robotics (2012), pp. 3-4; [2] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 5817-5822; [3] R. E. Goldman, A. Bajo, L. S. MacLachlan, R. Pickens, S. D. Herrell, N. Simaan: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Trans. Biomed. Eng. 60(4), 918-925 (2013)

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR ROKVISS animation

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 333

ROKVISS: animated simulation of a two-joint, torque- controlled manipulator on the ISS as it performs an iInspection task. The split screen shows simulated views of the robot (at top) and the stereo camera's view of the robot end-effector (at bottom).

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Robot Pebbles - MIT developing self-sculpting smart-sand robots

Author  Kyle Gilpin, Ara Knaian, Kent Koyanagi, Daniela Rus

Video ID : 211

Researchers at the Distributed Robotics Laboratory at MIT's Computer Science and Artificial Intelligence Laboratory are developing tiny robots that could self-assemble into functional tools, then self-disassemble after use. Dubbed the "smart sand," the tiny robots (measuring 0.1 cubic cm) would contain microprocessors and EG magnets which could latch, communicate, and transfer power to each other, enabling them to form life-size replicas of miniature models. https://groups.csail.mit.edu/drl/wiki/index.php?title=Robot_Pebbles

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Saturation-based, nonlinear, depth-and-yaw control of an underwater vehicle

Author  Eduardo Campos-Mercado, Ahmed Chemori, Vincent Creuze, Jorge Torres-Munoz, Rogelio Lozano

Video ID : 268

This video demonstrates the robustness of a saturation-based, nonlinear controller for underwater vehicles. The performance of yaw and depth control of the L2ROV prototype is maintained, even when the buoyancy and the damping are changed. This work has been conducted by the LIRMM (University Montpellier 2, France) and the LAFMIA (CINVESTAV Mexico), in collaboration with Tecnalia France Foundation. This work has been supported by the French-Mexican PCP program and by the Region Languedoc-Roussillon.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Autonomous, self-contained, soft robotic fish

Author  Andrew D. Marchese, Cagdas D. Onal, Daniela Rus

Video ID : 433

The robotic fish was built by Andrew Marchese, a graduate student in MIT's Department of Electrical Engineering and Computer Science and the lead author of the paper, where he is joined by Daniela Rus and postdoc Cagdas D. Onal. Each side of the fish's tail is bored through with a long, tightly undulating channel. Carbon dioxide released from a canister in the fish's abdomen causes the channel to inflate, bending the tail in the opposite direction.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Indoor, urban aerial vehicle navigation

Author  Jonathan How

Video ID : 703

The MIT indoor multi-vehicle testbed is specially designed to study long duration missions in a controlled, urban environment. This testbed is being used to implement and analyze the performance of techniques for embedding the fleet and vehicle health state into the mission and UAV planning. More than four air vehicles can be flown in a typical-sized room, and it takes no more than one operator to set up the platform for flight testing at any time of day and for any length of time. At the heart of the testbed is a global metrology system that yields very accurate, high bandwidth position and attitude data for all vehicles in the entire room.