View Chapter

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Teleoperated humanoid robot - HRP: Tele-driving of lifting vehicle

Author  Masami Kobayashi, Hisashi Moriyama, Toshiyuki Itoko, Yoshitaka Yanagihara, Takao Ueno, Kazuhisa Ohya, Kazuhito Yokoi

Video ID : 319

This video shows the teleoperation a humanoid robot HRP using whole-body multimodal tele-existence system. The human operator teleoperates the humanoid robot to drive a lifting vehicle in a warehouse. Presented at ICRA 2002.

Semi-autonomous teleoperation of multiple UAVs: Passing a narrow gap

Author  Antonio Franchi, Paolo Robuffo Giordano

Video ID : 71

This video shows the bilateral teleoperation of a group of four quadrotors UAVs navigating in a cluttered environment. The human operator provides velocity-level motion commands and receives force-feedback information on the UAV interaction with the environment (e.g., presence of obstacles and external disturbances).

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Aiko sidewinding

Author  Pål Liljebäck

Video ID : 254

Video of Aiko, a robot developed at the Norwegian University of Science and Technology (NTNU)/SINTEF Advanced Robotics Laboratory. In this video, the robot performs a sidewinding gait.

Chapter 59 — Robotics in Mining

Joshua A. Marshall, Adrian Bonchis, Eduardo Nebot and Steven Scheding

This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.

Autonomous haulage system

Author  Steven Scheding

Video ID : 145

This video shows the Autonomous Haulage System (AHS) implemented as part of Rio Tinto's Mine-of-the-Future initiative in North-Western Australia.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

World Robot Olympiad Japan 2014

Author  The Japan Times

Video ID : 637

Published on Sep 29, 2014: On Sept. 21, students from around Japan gathered at the Kanagawa Institute of Technology to test their skills as robot designers for a chance to compete in the upcoming World Robot Olympiad, to be held in Sochi, Russia. Details from: .

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Antwerp biomimetic sonar tracking of a single ball

Author  Herbert Peremans

Video ID : 316

The Antwerp biomimetic bat-head sonar system consists of a single emitter and two receivers. The receivers are constructed by inserting a small omnidirectional microphone in the ear canal of a plastic replica of the outer ear of the bat Phyllostomus discolor. Using the head-related transfer (HRTF) cues, the system is able to localize multiple reflectors in three dimensions based on a single emission. This movie demonstrates the tracking of a single ball target.

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

JediBot - Experiments in human-robot sword-fighting

Author  Torsten Kröger, Ken Oslund, Tim Jenkins, Dan Torczynski, Nicholas Hippenmeyer, Radu Bogdan Rusu, Oussama Khatib

Video ID : 759

Real-world sword-fighting between human opponents requires extreme agility, fast reaction time and dynamic perception capabilities. This video shows experimental results achieved with a 3-D vision system and a highly reactive control architecture which allowfs a robot to sword fight against human opponents. An online trajectory generator is used as an intermediate layer between low-level trajectory-following controllers and high-level visual perception. This architecture enables robots to react nearly instantaneously to the unpredictable human motions perceived by the vision system as well as to sudden sword contacts detected by force and torque sensors. Results show how smooth and highly dynamic motions are generated on-the-fly while using the vision and force/torque sensor signals in the feedback loops of the robot-motion controller. Reference: T. Kröger, K. Oslund, T. Jenkins, D. Torczynski, N. Hippenmeyer, R. B. Rusu, O. Khatib: JediBot - Experiments in human-robot sword-fighting, Proc. Int. Symp. Exp. Robot., Québec City (2012)

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Intuitive control of a planar bipedal walking robot

Author  Jerry Pratt

Video ID : 529

The planar bipedal walking robot `Spring Flamingo' driven by series elastic actuators developed by Dr. Jerry Pratt and Prof. Gill Pratt.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Tripteron robot

Author  Clément Gosselin

Video ID : 54

This video demonstrates a 3-DOF decoupled translational parallel robot (Tripteron). References: 1. X. Kong, C.M. Gosselin: Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator, Inte. J. Robot. Res. 21(9), 791-798 (2002); 2. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

SHAKEY: Experimentation in robot learning and planning (1969)

Author  Peter Hart, Nils Nilsson

Video ID : 704

SRI's robot Shakey (built 1966-1972) was the first mobile robot that could reason about its surroundings. This 1969 movie provides a good look at how Shakey worked.