View Chapter

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Integration of force strategies and natural-admittance control

Author  Brian B. Mathewson, Wyatt S. Newman

Video ID : 685

When mating parts are brought together, small misalignments must be accommodated by responding to contact forces. Using force feedback, a robot may sense contact forces during assembly and invoke a response to guide the parts into their correct mating positions. The proposed approach integrates force-guided strategies into Hogan's impedance control. Stability of both geometric convergence and of contact dynamics are achieved. Geometric convergence is accomplished more reliably than through the use of impedance control alone, and such a convergence is achieved more rapidly than through the use of force-guided strategies alone. This work was published in the ICRA 1995 video proceedings.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM (Example 1)

Author  Giorgio Grisetti

Video ID : 442

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), performed on the campus of the University of Freiburg, Germany.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Targeted reinnervation and the DEKA Arm

Author  Rehabilitation Institute of Chicago

Video ID : 513

Claudia Mitchell, 28, of Arkansas, demonstrates advanced, multidegree control of the DEKA Research arm at The Rehabilitation Institute of Chicago. Mitchell, who lost her arm in a motorcycle accident in 2004, underwent targeted muscle reinnervation in 2005. Video courtesy of the Rehabilitation Institute of Chicago and DEKA Research. Learn more at

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

IED hunters

Author  James P. Trevelyan

Video ID : 572

The video shows the work of route-clearance teams in Afghanistan.   This video has been included because researchers can see plenty of examples of realistic field conditions under which explosive-ordnance clearance is being done in Afghanistan. It is essential for researchers to have an accurate appreciation of the real field conditions before considering expensive research projects. It is also essential that researchers understand how easily insurgent forces can adapt and defeat technological solutions that have cost tens of millions of dollars to develop. Read the caption below carefully and then watch the video with this in mind. Better-quality blast-protected vehicles provide the teams with more confidence to handle challenging tasks. You will also see that improvised explosive devices (IEDs) used by insurgents are typically made from the unexploded ordnance (UXO) which the demining teams are trying to remove. Between 15% (typical failure rate for high quality US-made ammunition) and 70% (old Russian-designed ammunition) fail to explode when used.   These UXOs lie in the ground in a, at best, semi-stable state, so some easily exploded accidentally at times. Insurgents collect and attempt to disarm them, then set them up with remotely operated or vehicle-triggered detonation fuses. That is why the demining teams came to be seen as legitimate targets by insurgents, because they were removing the explosive devices the insurgency needed to fight people who they regarded as legitimate enemies. Although not explicitly acknowledged in the commentary, this video also demonstrates one of the many methods used by insurgents to adapt their techniques to defeat the highly advanced technologies available to the ISAF teams. By laying multiple devices in different locations, using different triggering devices and different deployment methods, the insurgents soon learned what the ISAF teams could and could not detect.   Every blast indicated a device that was not detected in advance by the ISAF team. Every device removed by the team indicated a device that was detected. In this way, the insurgents rapidly learned how to deploy undetectable devices that maximized their destructive power.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

A parallel robot

Author  Jae-Bok Song

Video ID : 640

Fig. 4.2 A parallel robot can have as many as six serial chains that connect a platform to the base frame.

Chapter 68 — Human Motion Reconstruction

Katsu Yamane and Wataru Takano

This chapter presents a set of techniques for reconstructing and understanding human motions measured using current motion capture technologies. We first review modeling and computation techniques for obtaining motion and force information from human motion data (Sect. 68.2). Here we show that kinematics and dynamics algorithms for articulated rigid bodies can be applied to human motion data processing, with help from models based on knowledge in anatomy and physiology. We then describe methods for analyzing human motions so that robots can segment and categorize different behaviors and use them as the basis for human motion understanding and communication (Sect. 68.3). These methods are based on statistical techniques widely used in linguistics. The two fields share the common goal of converting continuous and noisy signal to discrete symbols, and therefore it is natural to apply similar techniques. Finally, we introduce some application examples of human motion and models ranging from simulated human control to humanoid robot motion synthesis.

Example of optical motion-capture data converted to joint-angle data

Author  Katsu Yamane

Video ID : 762

This video shows an example of optical motion-capture data converted to the joint-angle data of a robot model.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

UAV stabilization, mapping and obstacle avoidance using VI-Sensor

Author  Skybotix AG

Video ID : 689

The video depicts UAV stabilization, mapping and obstacle avoidance using the Skybotix--Autonomous Systems Lab VI-Sensor - on-board and realtime. The robot is enabled with assisted teleoperation without line of sight and without the use of GPS during the ICARUS trials in Marche-En-Famenne.

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Shadow Hand

Author  Shadow Robot Company

Video ID : 753

The Shadow Hand is a popular and well-known commercial, anthropomorphic robot hand.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved GasNet visualisation

Author  Phil Husbands

Video ID : 375

The video shows a successfully evolved GasNet controlling a simulated robot engaged in a visual-discrimination task under noisy lighting. The GasNet architecture and all node properties are evolved along with the visual sampling morphology (parts of the visual field used as inputs to the GasNet). A minimal simulation is used which allows transfer to the real robot (see Sussex gantry Video 371). A highly minimal controller and visual morphology have evolved. The system is highly robust, coping with very noisy conditions. As can be seen, the GasNet employs multiple oscillator subcircuits - partly to filter out noise. Work by Tom Smith and Phil Husbands.

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

6-DOF object localization via touch

Author  Anna Petrovskaya

Video ID : 721

The PUMA robot arm performs 6-DOF localization of an object (i.e., a cash register) via touch starting with global uncertainty. After each contact, the robot analyzes the resulting belief about the object pose. If the uncertainty of the belief is too large, the robot continues to probe the object. Once, the uncertainty is small enough, the robot is able to push buttons and manipulate the drawer based on its knowledge of the object pose and prior knowledge of the object model. A prior 3-D mesh model of the object was constructed by touching the object with the robot's end-effector.