View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Kineassist

Author  Discover Channel/Michael Peshkin

Video ID : 505

The Kineassist is a gait-training robot which rolls behind a patient and compliantly supports the trunk and pelvis. It enables patients to challenge the limits of their stability, catching them if they fall.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Passive teleoperation of a nonlinear telerobot with tool-dynamics rendering

Author  Dongjun Lee

Video ID : 74

This is a video showing the passive teleoperation of nonlinear master-slave robots using passive decomposition, which enables master-slave coordination, apparent inertia scaling, and tool-dynamics rendering.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Autonomous robot skill acquisition

Author  Scott Kuindersma, George Konidaris

Video ID : 669

This video demonstrates the autonomous-skill acquisition of a robot acting in a constrained environment called the "Red Room". The environment consists of buttons, levers, and switches, all located at points of interest designated by ARTags. The robot can navigate to these locations and perform primitive manipulation actions, some of which affect the physical state of the maze (e.g., by opening or closing a door).

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Ichthus

Author  Gi-Hun Yang, Kyung-Sik Kim, Sang-Hyo Lee, Chullhee Cho, Youngsun Ryuh

Video ID : 432

This video study captures a stage in the development of a robotic fish called ‘Ichthus’ which can be used in water-quality sensing systems. The robotic fish ‘Ichthus’ has a 3-DOF serial link-mechanism for its propulsion, which was developed at KITECH.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Metamorphic robotic system

Author  Amit Pamecha, Gregory Chirikjian

Video ID : 198

This video describes a metamorphic robotic system composed of many robotic modules, each of which has the ability to locomote over its neighbors. Mechanical coupling enables the robots to interact with each other.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-CubeBot - Peg in hole

Author  Centro di Ricerca "E. Piaggio"

Video ID : 460

VSA-CubeBot performing an assembly task. It consists in inserting a chamfered 29.5 mm diameter cylindrical peg in a 30 mm diameter round hole. The task is performed using only inexpensive position sensors, without force measurements, by exploiting the intrinsic mechanical elasticity of the variable impedance actuation units.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM 3

Author  Cyrill Stachniss

Video ID : 451

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap.46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robot. Res. 31(11), 1219-1230 (2012).

Chapter 44 — Networked Robots

Dezhen Song, Ken Goldberg and Nak-Young Chong

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.

Teleoperation of a mini-excavator

Author  Keyvan Hashtrudi-Zaad, Simon P. DiMaio, Septimiu E. Salcudean

Video ID : 82

Teleoperation of a mini-excavator over the internet using a virtual master environment. This video is illustrates how a virtual-reality-based interface can assist users to comprehend robotic states. (See m. 44.4.3 of the Springer Handbook of Robotics, 2nd ed (2006) for details).

Chapter 66 — Robotics Competitions and Challenges

Daniele Nardi, Jonathan Roberts, Manuela Veloso and Luke Fletcher

This chapter explores the use of competitions to accelerate robotics research and promote science, technology, engineering, and mathematics (STEM) education. We argue that the field of robotics is particularly well suited to innovation through competitions. Two broad categories of robot competition are used to frame the discussion: human-inspired competitions and task-based challenges. Human-inspired robot competitions, of which the majority are sports contests, quickly move through platform development to focus on problemsolving and test through game play. Taskbased challenges attempt to attract participants by presenting a high aim for a robotic system. The contest can then be tuned, as required, to maintain motivation and ensure that the progress is made. Three case studies of robot competitions are presented, namely robot soccer, the UAV challenge, and the DARPA (Defense Advanced Research Projects Agency) grand challenges. The case studies serve to explore from the point of view of organizers and participants, the benefits and limitations of competitions, and what makes a good robot competition.

This chapter ends with some concluding remarks on the natural convergence of humaninspired competitions and task-based challenges in the promotion of STEM education, research, and vocations.

Brief history of RoboCup robot soccer

Author  Manuela Veloso

Video ID : 385

In this 5 min video, we explain the history of the multiple RoboCup soccer leagues.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Exploitation of social cues to speed up learning

Author  Sylvain Calinon, Aude Billard

Video ID : 106

Use of social cues to speed up the imitation-learning process, with gazing and pointing information to select the objects relevant for the task. Reference: S. Calinon, A.G. Billard: Teaching a humanoid robot to recognize and reproduce social cues, Proc. IEEE Int. Symp. Robot Human Interactive Communication (Ro-Man), Hatfield (2006), pp. 346–351; URL: http://lasa.epfl.ch/research/control_automation/interaction/social/index.php .