View Chapter

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

State-representation learning for robotics

Author  Rico Jonschkowski, Oliver Brock

Video ID : 670

State-representation learning for robotics using prior knowledge about interacting with the physical world.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Quadrupteron robot

Author  Clément Gosselin

Video ID : 52

This video demonstrates a 4-DOF partially decoupled scara-type parallel robot (Quadrupteron). References: 1. P.L. Richard, C. Gosselin, X. Kong: Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator, ASME J. Mech. Des. 129(6), 611-616 (2007); 2. X. Kong, C. Gosselin: Forward displacement analysis of a quadratic 4-DOF 3T1R parallel manipulator: The Quadrupteron, Meccanica 46(1), 147-154 (2011); 3. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Compliant robot motion: Control and task specification

Author  Joris De Schutter

Video ID : 687

The video contains work developed in the PhD thesis of Joris De Schutter, where the concept of compliant motion based on external force feedback loops and on the task frame formalism to specify interaction tasks were introduced. The video was recorded in 1984. The references for this video are 1. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18-33 (1988) 2. J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3-17 (1988)

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

RHex the parkour robot

Author  Uluc Saranli, Martin Buehler, Daniel E. Koditschek

Video ID : 400

RHex is an all-terrain walking robot that could conceivably one day climb over rubble in a rescue mission or cross the desert with environmental sensors strapped to its back. The name is pronounced "Rex" like the over-excited puppy it resembles when it is bounding over the ground; RHex is short for "robot hexapod", a name that stems from its six springy legs.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Automatic insertion implant calibration

Author  Nabil Simaan

Video ID : 245

Video shows a steerable model of electrode arrays for cochlear implant surgery. The implant is built from an elastomeric body with an embedded Kevlar strand. The strand location controls the bending shape in 2-D and 3-D. The video shows one model that moves in plane [1, 2]. In [1] we reported the optimal planning of the insertion path. In [2] we reported the optimal strand location to achieve optimal insertion in 3-D cavities. References: [1] J. Zhang, J. T. Roland, S. Manolidis, N. Simaan: Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery, J. Med. Dev. 3(1), 011001 (2009); [2] J. Zhang, N. Simaan: Design of underactuated steerable electrode arrays for optimal insertions, J. Mech. Robot. 5(1), 011008 (2013)

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

PROUD2013 - Inside VisLab's driverless car

Author  Alberto Broggi

Video ID : 178

This video shows the internal and external view of what happened during the PROUD2013 driverlesscar test in downtown Parma, Italy, on July 12, 2013. It also displays the internal status of the vehicle plus some vehicle data (speed, steering angle, and some perception results like pedestrian detection, roundabout merging alert, freeway merging alert, traffic light sensing, etc.). More info available from

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

An assistive decision-and-control architecture for force-sensitive, hand-arm systems driven via human-machine interfaces (MM2)

Author  Jörn Vogel, Sami Haddadin, John D. Simeral, Daniel Bacher , Beata Jarosiewicz, Leigh R. Hochberg, John P. Donoghue, Patrick van der Smagt

Video ID : 620

This video shows a 2-D pick and place of an object using the Braingate2 neural interface. The robot is controlled through a multipriority Cartesian impedance controller, and its behavior is extended with collision detection and reflex reaction. Furthermore, virtual workspaces are added to ensure safety. On top of this, a decision-and-control architecture, which uses sensory information available from the robotic system to evaluate the current state of task execution, is employed.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Binary manipulator navigating an obstacle

Author  Greg Chirikjian

Video ID : 163

Simulation of Greg Chirikjian's binary manipulator navigating an obstacle.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D4 welding robot assistant

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 383

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Job arrives (0:43); Chapter 3: Programming of weld seams (selection of seams) (01:08); Chapter 4: Scanning of seams (01:45); Chapter 5: Error recovery (02:13); Chapter 6: Welding I (02:33); Chapter 7: Welding II (02:57); Chapter 8: Seam inspection (03:32); Chapter 9: Statement (in German with English subtitles) (04:06); Chapter 10: Outro (04:32); Chapter 11: SMErobotics statement (04:55). For details, please visit:

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Probabilistic encoding of motion in a subspace of reduced dimensionality

Author  Keith Grochow, Steven Martin, Aaron Hertzmann, Zoran Popovic

Video ID : 102

Probabilistic encoding of motion in a subspace of reduced dimensionality. Reference: K. Grochow, S. L. Martin, A. Hertzmann, Z. Popovic: Style-based inverse kinematics, Proc. ACM Int. Conf. Comput. Graphics Interact. Tech. (SIGGRAPH), 522–531 (2004); URL: .