View Chapter

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System: Punching holes

Author  Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon, Markus Grebenstein, Oliver Eiberger, Werner Friedl, Hannes Höppner, Dominic Lakatos, Daniel Leidner, Florian Petit, Jens Reinecke, Sebastian Wolf, Tilo Wüsthoff

Video ID : 546

The DLR Hand Arm System uses a tool to punch holes into a business card. The passive flexibility in the variable stiffness actuators (VSA) helps to keep a stable grasp during the impact and protects the hardware from damage. The movement is realized by cyclic motion control and a learning algorithm to improve the accuracy of the holes.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolution of collision-free navigation

Author  Dario Floreano

Video ID : 39

In their initial generations, robots can hardly avoid walls (one robot even approaches objects). After 50 generations, robots can navigate around the looping maze without hitting the walls.

Chapter 39 — Cooperative Manipulation

Fabrizio Caccavale and Masaru Uchiyama

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperativemanipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the socalled symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture ofmodeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

Cooperative grasping and transportation of objects using multiple UAVs

Author  Daniel Mellinger, Michael Shomin, Nathan Michael, Vijay Kumar

Video ID : 66

This video shows experiments on cooperative grasping and transportation of objects using multiple UAVs equipped with grippers.

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

Finding paths through the world's photos

Author  Noah Snavely, Rahul Garg, Steven M. Seitz, Richard Szeliski

Video ID : 121

When a scene is photographed many times by different people, the viewpoints often cluster along certain paths. These paths are largely specific to the scene being photographed and follow interesting patterns and viewpoints. We seek to discover a range of such paths and turn them into controls for image-based rendering. Our approach takes as input a large set of community or personal photos, reconstructs camera viewpoints, and automatically computes orbits, panoramas, canonical views, and optimal paths between views. The scene can then be interactively browsed in 3-D using these controls or with six DOF free-viewpoint control. As the user browses the scene, nearby views are continuously selected and transformed, using control-adaptive reprojection techniques.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM using TORO

Author  Cyrill Stachniss

Video ID : 446

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the TORO algorithm. Reference: G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard. A tree parameterization for efficiently computing maximum likelihood maps using gradient descent, Proc. Robot. Sci. Syst. (RSS), Atlanta (2007)

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

Cartesian impedance control with damping on

Author  Alin Albu-Schaeffer

Video ID : 134

This 2010 video shows the performance of a Cartesian impedance controller for the torque-controlled KUKA-LWR robot holding an extra payload when the damping term is active in the controller. The transient response to a contact force (a human pushing on the end-effector) is very short and free of oscillations. This is one of two coordinated videos, the other being for the case with controller damping turned off. Reference: A. Albu-Schaeffer, C. Ott, G. Hirzinger: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robot. Res. 26(1), 23-39 (2007) doi: 10.1177/0278364907073776

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR ROKVISS animation

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 333

ROKVISS: animated simulation of a two-joint, torque- controlled manipulator on the ISS as it performs an iInspection task. The split screen shows simulated views of the robot (at top) and the stereo camera's view of the robot end-effector (at bottom).

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Integration of force strategies and natural-admittance control

Author  Brian B. Mathewson, Wyatt S. Newman

Video ID : 685

When mating parts are brought together, small misalignments must be accommodated by responding to contact forces. Using force feedback, a robot may sense contact forces during assembly and invoke a response to guide the parts into their correct mating positions. The proposed approach integrates force-guided strategies into Hogan's impedance control. Stability of both geometric convergence and of contact dynamics are achieved. Geometric convergence is accomplished more reliably than through the use of impedance control alone, and such a convergence is achieved more rapidly than through the use of force-guided strategies alone. This work was published in the ICRA 1995 video proceedings.

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

An innovative planetary rover with extended climbing abilities

Author  Roland Siegwart

Video ID : 329

This video shows a suspension design for a prototype planetary exploration rover. In this suspension design, each wheel is equipped with independent actuators and a linkage mechanism that enables the robot to adapt its configuration to irregular ground conditions. This enables the rover to exhibit superior traction and obstacle-crossing performance compared to those with a standard suspension.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A robot that provides a direction based on the model of the environment

Author  Takayuki Kanda

Video ID : 259

The video shows a scene of direction-giving interaction. The robot communicates the way to reach the destination with pointing in the direction to go. This interaction is supported with its capability to understand the environment. That is, the robot possesses the model of the environment, like a geographical map, topology, and landmarks from a first-person perspective, the so called route-perspective model.