View Chapter

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Teleoperated hmanoid robot - HRP

Author  O. Miki, T. Itoko, K. Sawada, T. Nishiyama, K. Hira, S. Nakayama, H. Inaba, M. Sudo, K. Tanie, K. Yokoi, S. Hira, H. Hirukawa, H. Inoue, S. Tachi

Video ID : 318

This video shows a tele-existence system to teleoperate a humanoid robot HRP using multimodal feedback and integrated whole-body perception and control. Presented at ICRA 2001.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

CompAct™ robotics technology

Author  Istituto Italiano di Tecnologia (IIT)

Video ID : 471

Brief video showing CompAct™ actuation units and arm, demonstrating the effects of its core variable damping (VPDA) technology. Key features of these units include: 1. intrinsic safety (lightweight and elastic transmission) meant for safe human-robot collaboration; 2. precision, thanks to the variable damping transmission, protected by international patents; 3. ease of use (no need for experts to program it, easy to reprogram, flexible to use).

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Natural interaction design of a humanoid robot

Author  François Michaud

Video ID : 418

Demonstration of the use of HBBA, hybrid behavior-based architecture, to implement three interactional capabilities on IRL-1. Reference: F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria, F. Michaud: Natural interaction design of a humanoid robot, J. Human-Robot Interact. 1(2), 118-134 (2012)

Chapter 45 — World Modeling

Wolfram Burgard, Martial Hebert and Maren Bennewitz

In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topologicalmaps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-basedmaps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.

Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

3-D textured model of urban environments

Author  Michael Maurer

Video ID : 269

In this video, a micro aerial vehicle developed by the Institute for Computer Graphics and Vision, Graz Univ. of Technology, flies to predefined points and captures images for building a 3-D textured model of an urban environment. The video contains a nice description of the different steps necessary to generate a precise model by fusing the areal images with public geographic data.

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

From knowledge grounding to dialogue processing

Author  Séverin Lemaignan, Rachid Alami

Video ID : 705

This 2012 video documents the entire process of perspective-aware knowledge acquisition, knowledge representation and storage, and dialogue understanding. It demonstrates several examples of the natural interaction of a human with a PR2 robot, including speech recognition and action execution.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Collaborative control of the Body Extender

Author  Massimo Bergamasco

Video ID : 151

The video shows the numerical and experimental validation of the collaborative control applied to the Body Extender. The control prevents the overturning of the system under the action of gravity by minimally distorting the operator's intended motion.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of a parallel robot: Trajectory with load

Author  Maxime Gautier

Video ID : 485

This video shows a trajectory with a known mass payload attached to the platform, used to identify the dynamic parameters and joint drive gains of a parallel prototype robot Orthoglyde. Details and results are given in the paper: S. Briot, M. Gautier: Global identification of joint drive gains and dynamic parameters of parallel robots, Multibody Syst. Dyn. 33(1), 3-26 (2015); doi 10.1007/s11044-013-9403-6

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Flexible robot gripper for KUKA Light Weight Robot (LWR): Collaboration between human and robot

Author  Robotiq

Video ID : 632

Flexible robot gripper on KUKA Light Weight Robot engaged in a proximal human-robot collaboration. The human-safe robot combined with a agile robot gripper demonstrates collaborative part feeding and part holding in assembly tasks.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

The Nerd Herd

Author  Maja J. Mataric

Video ID : 34

This is a video showing the work done in the early 1990s with the Nerd Herd used as a multirobot behavior-based system. Reference: M.J. Matarić: Designing and understanding adaptive group behavior, Adapt. Behav. 4(1), 50–81 (1995)

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Full body compliant humanoid COMAN

Author  IIT - Advanced Robotics

Video ID : 698

The compliant humanoid COMAN is developed by the Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT). http://www.iit.it/en/research/departm... All the achievements shown in this video are attributed to the team work of the Humanoid Group in ADVR, IIT.