View Chapter

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D2 Human-Robot cooperation in wooden house production

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 381

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Use of CAD data (00:32); Chapter 3: Object recognition and human interaction (00:47); Chapter 4: Program planning (01:15); Chapter 5: Program execution (01:53); Chapter 6: Automatic Tool Change (02:44); Chapter 7: Error handling (03:13); Chapter 8: Statement (03:58) Chapter 9: Outro (04:18); Chapter 10: The Consortium (04:56). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d2.html

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Exploration and homing for battery recharge

Author  Dario Floreano

Video ID : 118

Evolved Khepera robot performing exploration and homing for battery recharge. The robot enters the recharging area approximately 2 s before full-battery discharge.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Structural, inspection-path planning via iterative, viewpoint resampling with application to aerial robotics

Author  Kostas Alexis

Video ID : 604

This video presents experimental results relevant for the ICRA 2015 paper: A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart: Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics, IEEE Int. Conf. Robot. Autom. (ICRA), Seattle (2015), pp. 6423 - 6430; doi: 10.1109/ICRA.2015.7140101

Chapter 49 — Modeling and Control of Wheeled Mobile Robots

Claude Samson, Pascal Morin and Roland Lenain

This chaptermay be seen as a follow up to Chap. 24, devoted to the classification and modeling of basic wheeled mobile robot (WMR) structures, and a natural complement to Chap. 47, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies.

The chapter is organized as follows. Section 49.2 is devoted to the choice of controlmodels and the determination of modeling equations associated with the path-following control problem. In Sect. 49.3, the path following and trajectory stabilization problems are addressed in the simplest case when no requirement is made on the robot orientation (i. e., position control). In Sect. 49.4 the same problems are revisited for the control of both position and orientation. The previously mentionned sections consider an ideal robot satisfying the rolling-without-sliding assumption. In Sect. 49.5, we relax this assumption in order to take into account nonideal wheel-ground contact. This is especially important for field-robotics applications and the proposed results are validated through full scale experiments on natural terrain. Finally, a few complementary issues on the feedback control of mobile robots are briefly discussed in the concluding Sect. 49.6, with a list of commented references for further reading on WMRs motion control.

Tracking of an omnidirectional frame with a unicycle-like robot

Author  Guillaume Artus, Pascal Morin, Claude Samson

Video ID : 243

This video shows an experiment performed in 2005 with a unicyle-like robot. A video camera mounted at the top of a robotic arm enabled estimation of the 2-D pose (position/orientation) of the robot with respect to a visual target consisting of three white bars. These bars materialized an omnidirectional moving frame. The experiment demonstrated the capacity of the nonholonomic robot to track in both position and orientation this ominidirectional frame, based on the transverse function control approach.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

A method for transporting a team of miniature robots

Author  Nikolaos Papanikolopoulos

Video ID : 205

A scout robot is a small robot with a limited battery supply that is used mainly for reconnaissance. This research uses a larger robot to transport the scouts to an area of interest. The scouts can then jump into and out of a platform on the larger robot, thus increasing the distance the scouts can search.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Antwerp biomimetic sonar tracking of a complex object

Author  Herbert Peremans

Video ID : 311

The Antwerp biomimetic bat head sonar system consists of a single emitter and two receivers. The receivers are constructed by inserting a small omnidirectional microphone in the ear canal of a plastic replica of the outer ear of the bat Phyllostomus discolor. Using the head-related transfer (HRTF) cues, the system is able to localize multiple reflectors in three dimensions based on a single emission. This video demonstrates that the reflector does not need to be a sphere for this spectrum-based localization algorithm to work. Despite the filtering of the echo signal by the reflector, no apparent confusion of the 3-D localization results.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Whole-body "pivoting" manipulation

Author  Eiichi Yoshida

Video ID : 595

The humanoid robot performs "pivoting" manipulation to carry a bulky object without lifting. A coarse path of the object towards its goal position is first planned to compute the trajectory of the hands which perform the manipulation. Then foot positions are determined along the object path, from which the COM trajectory is derived using the dynamic walking-pattern generator. Those tasks are provided to the inverse kinematics to generate the coordinated arm and leg motion for this complex manipulation. The second video shows the motion planning combining pivoting manipulation and free walking motion in a more complex environment.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

SpartacUS

Author  François Michaud

Video ID : 417

AAAI 2005 Robot Challenge entry from the Université de Sherbrooke, named Spartacus, using MBA (motivated behavioral architecture) to enable a robot to participate at the conference as a regular attendee. Reference: F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J.-M. Valin, É. Beaudry, C. Raïevsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M.-A. Roux, S. Caron, P. Frenette, F. Kabanza: Spartacus attending the 2005 AAAI Conference, Auton. Robot. 12(2), 211–222 (2007)

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

Windoro window-cleaning robot review

Author  Erwin Prassler

Video ID : 734

Video reviews the performance of the robotic window-cleaner Windoro.

Chapter 60 — Disaster Robotics

Robin R. Murphy, Satoshi Tadokoro and Alexander Kleiner

Rescue robots have been used in at least 28 disasters in six countries since the first deployment to the 9/11 World Trade Center collapse. All types of robots have been used (land, sea, and aerial) and for all phases of a disaster (prevention, response, and recovery). This chapter will cover the basic characteristics of disasters and their impact on robotic design, and describe the robots actually used in disasters to date, with a special focus on Fukushima Daiichi, which is providing a rich proving ground for robotics. The chapter covers promising robot designs (e.g., snakes, legged locomotion) and concepts (e.g., robot teams or swarms, sensor networks), as well as progress and open issues in autonomy. The methods of evaluation in benchmarks for rescue robotics are discussed and the chapter concludes with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption.

Assistive mapping during teleoperation

Author  Alexander Kleiner, Christian Dornhege, Andreas Ciossek

Video ID : 140

This video shows a commercial mapping system that has been developed by the University of Freiburg (A. Kleiner and C. Dornhege) and the telerob GmbH (A. Ciossek) in Germany. The video first shows the physical integration of the mapping system on the telemax bomb-disposal robot. Then, the real-time output of the mapping system superimposed on the video output of the robot's camera is shown.