View Chapter

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Visual navigation of mobile robot with pan-tilt camera

Author  Dario Floreano

Video ID : 36

A mobile robot with a pan-tilt camera is asked to to navigate in a square arena with low walls and located in an office.

Chapter 44 — Networked Robots

Dezhen Song, Ken Goldberg and Nak-Young Chong

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.

Tele-actor

Author  Ken Goldberg, Dezhen Song

Video ID : 83

We describe a networked teleoperation system that enables groups of participants to collaboratively explore real-time remote environments. Participants collaborate using a spatial dynamic voting (SDV) interface which enables them to vote on a sequence of images via a network such as the internet. The SDV interface runs on each client computer and communicates with a central server which collects, displays, and analyzes time sequences of spatial votes. The results are conveyed to the “tele-actor,” a skilled human with cameras and microphones who navigates and performs actions in the remote environment.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

3-D, collision-free motion combining locomotion and manipulation by humanoid robot HRP-2 (experiment)

Author  Eiichi Yoshida

Video ID : 598

In this video, the whole-body motion generation described in video 598 is experimentally validated, using the HRP-2 humanoid robot.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

An automated mobile platform for orchard scanning and for soil, yield, and flower mapping

Author  James Underwood, Calvin Hung, Suchet Bargoti, Mark Calleija, Robert Fitch, Juan Nieto, Salah Sukkarieh

Video ID : 306

This video shows an end-to-end system for acquiring high-resolution information to support precision agriculture in almond orchards. The robot drives along the orchard rows autonomously, gathering LIDAR and camera data while passing the trees. Each tree is automatically identified and photographed. Image classification is performed on the photos to estimate flower and fruit densities per tree. The information can be stored in a database, compared throughout the season and from one year to the next, and mapped and displayed visually to assist growers in managing and optimizing production.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Justin: A humanoid upper body system for two-handed manipulation experiments

Author  Christoph Borst, Christian Ott, Thomas Wimböck, Bernhard Brunner, Franziska Zacharias, Berthold Bäuml

Video ID : 626

This video presents a humanoid two-arm system developed as a research platform for studying dexterous two-handed manipulation. The system is based on the modular DLR-Lightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a 3-DOF movable torso and a visual system to form a complete humanoid upper body. The diversity of the system is demonstrated by showing the mechanical design, several control concepts, the application of rapid prototyping and hardware-in-the-loop (HIL) development, as well as two-handed manipulation experiments and the integration of path planning capabilities.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM 2

Author  Cyrill Stachniss

Video ID : 450

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap. 46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM. Reference: Int. J. Robot. Res. 31(11), 1219-1230 (2012).

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Exploration and homing for battery recharge

Author  Dario Floreano

Video ID : 118

Evolved Khepera robot performing exploration and homing for battery recharge. The robot enters the recharging area approximately 2 s before full-battery discharge.

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Safe human-robot cooperation

Author  Fabrizio Flacco, Torsten Kröger, Alessandro De Luca, Oussama Khatib

Video ID : 757

A real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution shown in this video is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to generate repulsive vectors that are used to control the robot while executing a generic motion task. The repulsive vectors can also take advantage of an estimation of the obstacle velocity. In order to preserve the execution of a Cartesian task with a redundant manipulator, a simple collision-avoidance algorithm has been implemented, where different reaction behaviors are set up for the end-effector and for other control points along the robot structure. Reference: F. Flacco, T. Kröger, A. De Luca, O. Khatib: A depth space approach to human-robot collision avoidance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Saint Paul (2012), pp. 338-345

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR ROKVISS animation

Author  Gerd Hirzinger, Klaus Landzettel

Video ID : 333

ROKVISS: animated simulation of a two-joint, torque- controlled manipulator on the ISS as it performs an iInspection task. The split screen shows simulated views of the robot (at top) and the stereo camera's view of the robot end-effector (at bottom).

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm-Exos

Author  Massimo Bergamasco

Video ID : 148

The video details the Arm-Exos and, in particular, its capability for tracking the operator's motions and for rendering the contact forces in a simple, demonstrative, virtual environment.