Chapter 6 — Model Identification

Calibration and accuracy validation of a FANUC LR Mate 200iC industrial robot

This video shows excerpts from the process of calibrating a FANUC LR Mate 200iC industrial robot using two different methods. In the first method, the position of one of three points on the robot end-effector is measured using a FARO laser tracker in 50 specially selected robot configurations (not shown in the video). Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean positioning error after calibration was found to be 0.156 mm, the standard deviation (std) 0.067 mm, the mean+3*std 0.356 mm, and the maximum 0.490 mm. In the second method, the complete pose (position and orientation) of the robot end-effector is measured in about 60 robot configurations using an innovative method based on Renishaw's telescoping ballbar. Then, the robot parameters are identified. Next, the position of one of the three points on the robot's end-effector is measured using the laser tracker in 10,000 completely arbitrary robot configurations. The mean position error after calibration was found to be 0.479 mm, the standard deviation (std) 0.214 mm, and the maximum 1.039 mm. However, if we limit the zone for validations, the accuracy of the robot is much better. The second calibration method is less efficient but relies on a piece of equipment that costs only $12,000 (only one tenth the cost of a laser tracker).
Ilian Bonev
430
Thanks to Ilian Bonev