View Chapter

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Torque control for teaching peg-in-hole via physical human-robot interaction

Author  Alin-Albu Schäffer

Video ID : 627

Teaching by demonstration is a typical application for impedance controllers. A practical demonstration was given with the task of teaching for automatic insertion of a piston into a motor block. Teaching is realized by guiding the robot with the human hand. It was initially known that the axes of the holes in the motor block were vertically oriented. In the teaching phase, high stiffness components for the orientations were commanded (150 Nm/rad), while the translational stiffness was set to zero. This allowed only translational movements to be demonstrated by the human operator. In the second phase, the taught trajectory has been automatically reproduced by the robot. In this phase, high values were assigned for the translational stiffness (3000 N/m), while the stiffness for the rotations was low (60 Nm/rad). This enabled the robot to compensate for the remaining position errors. For two pistons, the total time for the assembly was 6 s. In this experiment, the assembly was executed automatically four-times faster than by the human operator holding the robot as an input device in the teaching phase (24 s), while the free-hand execution of the task by a human requires about 4 s.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Promotional video of robot for cleaning up Fukushima

Author  James P. Trevelyan

Video ID : 583

Many companies have proposed new robots to help with the Fukushima reactor decommissioning process. This is one of many such promotional videos.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

The MIME rtehabilitation-therapy robot

Author  Peter Lum,Machiel Van der Loos, Chuck Burgar

Video ID : 495

The 6-DOF MIME robot assisting the left arm in unilateral and bimanual modes. In the unilateral mode, the robot provides end-point tunnel guidance toward the target. In bimanual mode, movement of the right arm is measured with a 6-DOF digitizer, and the robot assists the left arm in performing mirror-image movements.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Full-body, compliant humanoid COMAN

Author  Department of Advanced Robotics, Istituto Italiano di Tecnologia

Video ID : 624

The video shows different characteristics of the compliant humanoid (COMAN) which is developed by the Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), i.e.: i) fully torque controlled, ii) compliant human-robot interaction, iii) joint impedance control, iv) exploration of natural dynamics, v) robust stabilization control including disturbance rejection;and vi) adaption to inclined terrain.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Explaining a typical session with Sunflower as a home companion in the Robot House

Author  Kerstin Dautenhahn

Video ID : 221

The video illustrates and explains one of the final showcases of the European project LIREC (http://lirec.eu/project) in the University of Hertfordshire Robot House. The Sunflower robot, developed at UH, provides cognitive and physical assistance in a home scenario. In the video, one of the researchers, Dag Syrdal, explains a typical session in long-term evaluation studies in the Robot House. Sunflower has access to a network of smart sensors in the Robot House. The video also illustrates the concept of migration (moving of the robot's mind/AI to a differently embodied system).

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System smashed with baseball bat

Author  Sebastian Wolf, Oliver Eiberger, Gerd Hirzinger

Video ID : 461

The DLR Hand Arm System is equipped with variable stiffness actuators (VSA). In this demonstration of robustness, the arm resists the impact of a baseball bat.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

IBVS on a 6- DOF robot arm (3)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 61

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and mean interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.4.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

NanoMag magnetic crawler for remote inspection

Author  James P. Trevelyan

Video ID : 591

Promotional video for an inspection robot. This robot is clearly limited to working on magnetic surfaces.

Chapter 15 — Robot Learning

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell and Stefan Schaal

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

Learning motor primitives

Author  Jens Kober, Jan Peters

Video ID : 355

The video shows recent success in robot learning for two basic motor tasks, namely, ball-in-a-cup and ball paddling. The video illustrates Section 15.3.5 -- Policy Search, of the Springer Handbook of Robotics, 2nd edn (2016). Reference: J. Kober, J. Peters: Imitation and reinforcement learning - Practical algorithms for motor primitive learning in robotics, IEEE Robot. Autom. Mag. 17(2), 55-62 (2010)

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The PISA-IIT SoftHand (1)

Author  IIT - Pisa University

Video ID : 749

The PISA-IIT SoftHand is a anthropomorphic device with a single actuator. The video shows the hand being controlled with EMG signals.