View Chapter

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Autonomous sub-tracks control 2

Author  Field Robotics Group, Tohoku University

Video ID : 191

Field robotics group (Tohoku University) developed an autonomous controller for the tracked vehicle (Quince) to generate terrain-reflective motions by the sub-tracks. Terrain information is obtained using laser range sensors that are located on both sides of the Quince. Using this system, operators only have to specify a direction for the robot, following which the robot traverses rough terrain using autonomous sub-track motions.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

PID response to impulse in presence of link flexibility

Author  Wayne Book

Video ID : 780

A laboratory gantry robot with a final flexible link is excited by an external impulse disturbance. The video shows the very low damping of the flexible link under PID joint control. This is one of two coordinated videos, the other showing the same experiment under state feedback control. Reference: B. Post: Robust State Estimation for the Control of Flexible Robotic Manipulators, Dissertation, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (2013)

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

An omnidirectional mobile robot with active caster wheels

Author  Woojin Chung

Video ID : 325

This video shows a holonomic omnidirectional mobile robot with two active and two passive caster wheels. Each active caster is composed of two actuators. The first actuator drives a wheel; the second actuator steers the wheel orientation. Although the mechanical structure of the driving mechanisms becomes a little complicated, conventional tires can be used for omnidirectional motions. Since the robot is overactuated, four actuators should be carefully controlled.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM (Example 1)

Author  Giorgio Grisetti

Video ID : 442

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), performed on the campus of the University of Freiburg, Germany.

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Introduction

Author  Fiorella Operto

Video ID : 773

Introduction ton Ethical, Legal and Societal issues. This is the first time in history that humanity is nearing the achievement of replicating an intelligent and autonomous entity. This compels the scientific community to examine closely the very concept of intelligence – in humans and animals, and of the me- chanical – from a cybernetic standpoint. In fact, complex concepts like autonomy, learning, consciousness, evaluation, free will, decision making, freedom, emotions, and many others need to be analyzed, taking into account that the same concept may not have, in humans, animals, and machines, the same semantic meaning. From this standpoint, it can be seen as natural and necessary that robotics draws on several other disciplines, such as logic, linguistics, neuroscience, psychology, biology, physiology, philosophy, litera- ture, natural history, anthropology, art, and design. In fact, robotics de facto combines the so-called two cultural spheres, science and humanities. The effort to design roboethics should take into account this specificity. This means that experts will consider robotics as a whole - in spite of the current early stage which recalls a melting pot – so they can achieve the vision of robotics’ future. “Roboethics is an applied ethics whose objective is to develop scientific/cultural/technical tools that can be shared by different social groups and beliefs. These tools aim to promote and encourage the development of robotics for the advancement of human society and individuals, and to help preventing its misuse against humankind.” (Veruggio, 2002)

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

3-DOF high-speed 3-RPS parallel robot

Author  Tian Huang

Video ID : 43

This video demonstrates a 3-DOF high-speed 3-RPS parallel robot (with A3 head).

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube arm: Drawing on a wavy surface (selective stiffness)

Author  Centro di Ricerca "E. Piaggio"

Video ID : 474

A 3-DOF arm, built with VSA-cube units, performing a circle on a wavy surface with a proper (selective) stiffness preset.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

The FLEA: Flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism

Author  Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, Kyu-Jin Cho

Video ID : 281

The FLEA: flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism. The robot was created to realize a flea-inspired catapult mechanism with shape-memory-alloy (SMA) spring actuators and a smart composite microstructure. The robot was fabricated with a weight of 1.1 g and a 2 cm body size, so that it can jump a distance of up to 30 times its body size.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

MDARS I: Indoor security robot

Author  Bart Everett

Video ID : 680

The mobile detection-assessment response system (MDARS) is a joint Army-Navy effort to field interior and exterior autonomous platforms for security and inventory-assessment functions at DOD warehouses and storage sites. The MDARS system, which provides an automated, robotic-security capability for storage yards, petroleum tank farms, rail yards, and arsenals, includes multiple supervised-autonomous platforms equipped with intrusion detection, barrier assessment, and inventory assessment subsystems commanded from an integrated control station.

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Touch-based, door-handle localization and manipulation

Author  Anna Petrovskaya

Video ID : 723

The harmonic arm robot localizes the door handle by touching it. 3-DOF localization is performed in this video. Once the localization is complete, the robot is able to grasp and manipulate the handle. The mobile platform is teleoperated, whereas the robotic arm motions are autonomous. A 2-D model of the door and handle was constructed from hand measurements for this experiment.