View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Indego

Author  Parker Hannifin

Video ID : 510

Indego is a powered orthosis developed by Vanderbilt University and commercialized by Parker Hannifin, which is designed to help individuals with paralysis to walk.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Essex series robotic fish

Author  Jindong Liu, Huosheng Hu

Video ID : 431

These are Essex autonomous robotic fish tested in a public fish tank in the London Aquarium. The video was captured during preparations for unveiling the World's first autonomous robotic fish in 2006. It was reported by BBC and other news outlets. There are three motors on the tail joint. The skin is cosmetic and water flooded. The various models are labelled G6 , G8, andG9. This video shows how a "fish" detects the tank wall and other "fish" by IR sensors and changes its path to avoid collision.

Chapter 12 — Robotic Systems Architectures and Programming

David Kortenkamp, Reid Simmons and Davide Brugali

Robot software systems tend to be complex. This complexity is due, in large part, to the need to control diverse sensors and actuators in real time, in the face of significant uncertainty and noise. Robot systems must work to achieve tasks while monitoring for, and reacting to, unexpected situations. Doing all this concurrently and asynchronously adds immensely to system complexity.

The use of a well-conceived architecture, together with programming tools that support the architecture, can often help to manage that complexity. Currently, there is no single architecture that is best for all applications – different architectures have different advantages and disadvantages. It is important to understand those strengths and weaknesses when choosing an architectural approach for a given application.

This chapter presents various approaches to architecting robotic systems. It starts by defining terms and setting the context, including a recounting of the historical developments in the area of robot architectures. The chapter then discusses in more depth the major types of architectural components in use today – behavioral control (Chap. 13), executives, and task planners (Chap. 14) – along with commonly used techniques for interconnecting connecting those components. Throughout, emphasis will be placed on programming tools and environments that support these architectures. A case study is then presented, followed by a brief discussion of further reading.

Software product line engineering for robotics

Author  Davide Brugali

Video ID : 273

The video illustrates the software product-line approach to the development of robot software control systems and the open source HyperFlex toolchain that supports it.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Three-fingered robot hand

Author  Masatoshi Ishikawa

Video ID : 642

Fig. 4.5 to Fig. 4.7 Three-fingered robot hand moving very fast.

Chapter 39 — Cooperative Manipulation

Fabrizio Caccavale and Masaru Uchiyama

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperativemanipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the socalled symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture ofmodeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

Control of cooperative manipulators in the operational space

Author  Oussama Khatib

Video ID : 70

This video shows a series of experiments on operational space control of cooperative manipulators. Both the virtual linkage and augmented object concepts are experimentally demonstrated, together with cooperative manipulation via multiple mobile arms (Romeo & Juliet).

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

UGV Demo II: Outdoor surveillance robot

Author  Wendell Chun

Video ID : 679

The UGV / Demo II program, begun in 1992, developed and matured those navigation and automatic target-recognition technologies critical for the development of supervised, autonomous ground vehicles capable of performing military scout missions with a minimum of human oversight.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Kineassist

Author  Discover Channel/Michael Peshkin

Video ID : 505

The Kineassist is a gait-training robot which rolls behind a patient and compliantly supports the trunk and pelvis. It enables patients to challenge the limits of their stability, catching them if they fall.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

IBVS on a 6- DOF robot arm (3)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 61

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and mean interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.4.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Control pre-imaging for multifingered grasp synthesis

Author  Jefferson A. Coelho Jr. et al.

Video ID : 363

The video demonstrates sensory-motor control for multifingered manipulation. The first part of the video shows a top and a lateral grasp of rectangular blocks synthesized by the proposed controller. The second part shows dexterous manipulation tests, controlling stable multiple fingers to walk over the surface of an object while grasping the object.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Using ROS4iOS

Author  François Michaud

Video ID : 419

Demonstration of the integration, using HBBA (hybrid behaviour-based architecture), of navigation, remote localization, speaker identification, speech recognition and teleoperation. The scenario employs the ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition. Reference: F. Ferland, R. Chauvin, D. Létourneau, F. Michaud: Hello robot, can you come here? Using ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition, Proc. Int. ACM/IEEE Conf. Human-Robot Interaction (2014), p. 101