View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

ReWalk

Author  Argo Medical Technologies

Video ID : 508

The ReWalk is a legged exoskeleton designed to help people with paralysis to walk.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Synchronization and fault detection in autonomous rbots

Author  Andres Lyhne Christensen, Rehan O'Grady, Marco Dorigo

Video ID : 194

This video demonstrates a group of robots detecting faults in each other and simulating repair. The technique relies on visual fire-fly-like synchronization. Each robot synchronizes with the others based on the detection of LED lights and flashes using on-board cameras. The robots simulate fault and repair based on the frequency of flashes. The video shows an experiment with many robots working together and simulating faults and repairs.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System smashed with baseball bat

Author  Sebastian Wolf, Oliver Eiberger, Gerd Hirzinger

Video ID : 461

The DLR Hand Arm System is equipped with variable stiffness actuators (VSA). In this demonstration of robustness, the arm resists the impact of a baseball bat.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

The astounding athletic power of quadcopters

Author  Raffaello D'Andrea

Video ID : 694

In a robot lab at TEDGlobal, Raffaello D'Andrea demonstrates his flying quadcopters: Robots that think like athletes, solving physical problems with algorithms that help them learn. In a series of nifty demos, D'Andrea works with drones that play catch, balance and make decisions together -- and watch out for an I-want-this-now demo of Kinect-controlled quads.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Multi-robot operator control unit

Author  Bart Everett

Video ID : 701

The Space and Naval Warfare Systems Center, San Diego (SSC San Diego) has developed an unmanned vehicle and sensor operator interface capable of controlling and monitoring multiple sets of heterogeneous systems simultaneously. The modularity, scalability and flexible user interface of the multirobot operator control unit (MOCU) enable control of a wide range of vehicles and sensors in varying mission scenarios.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Mobile-robot navigation system in outdoor pedestrian environment

Author  Chin-Kai Chang

Video ID : 711

We present a mobile-robot navigation system guided by a novel vision-based, road-recognition approach. The system represents the road as a set of lines extrapolated from the detected image contour segments. These lines enable the robot to maintain its heading by centering the vanishing point in its field of view, and to correct the long-term drift from its original lateral position. We integrate odometry and our visual, road-recognition system into a grid-based local map which estimates the robot pose as well as its surroundings to generate a movement path. Our road recognition system is able to estimate the road center on a standard dataset with 25 076 images to within 11.42 cm (with respect to roads that are at least 3 m wide). It outperforms three other state-of-the-art systems. In addition, we extensively test our navigation system in four busy campus environments using a wheeled robot. Our tests cover more than 5 km of autonomous driving on a busy college campus without failure. This demonstrates the robustness of the proposed approach to handle challenges including occlusion by pedestrians, non-standard complex road markings and shapes, shadows, and miscellaneous obstacle objects.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Flight stability in aerial redundant manipulators

Author  Christopher Korpela, Matko Orsag, Todd Danko, Bryan Kobe, Clayton McNeil, Robert Pisch, Paul Oh

Video ID : 693

Aerial manipulation tests conducted by the Drexel Autonomous Systems Lab.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Policy refinement after demonstration

Author  Sylvain Calinon, Petar Kormushev, Darwin Caldwell

Video ID : 105

Use of stochastic optimization in the policy-parameters space to refine a skill initially learned from demonstration. Reference: S. Calinon, P. Kormushev, D.G. Caldwell: Compliant skills acquisition and multi-optima policy search with EM-based reinforcement learning, Robot. Auton. Syst. 61(4), 369–379 (2013); URL: http://vimeo.com/13387420

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Robotic wheelchair: Autonomous navigation with Google Glass

Author  Personal Robotics Group - OSU

Video ID : 709

For people with extreme disabilities such as ALS or quadriplegia, it is often hard to move about on their own and interact with their environments due to their immobility. Our work - nicknamed "Project Chiron" - attempts to alleviate some of this immobility with a kit that can be used on any Permobil-brand wheelchair.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

senseSoar UAV avionics testing

Author  Kostas Alexis

Video ID : 603

This video presents the avionics testing trial of the senseSoar solar-powered UAV.