View Chapter

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

3-DOF dynamically balanced parallel robot

Author  Clément Gosselin

Video ID : 49

This video demonstrates a 3-DOF dynamically balanced parallel robot. References: 1. S. Foucault, C. Gosselin: On the development of a planar 3-DOF reactionless parallel mechanism, Proc. ASME Mech. Robot. Conf., Montréal (2002); 2. Y. Wu, C. Gosselin: Synthesis of reactionless spatial 3-DOFf and 6-DOF mechanisms without separate counter-rotations, Int. J. Robot. Res. 23(6), 625-642 (2004)

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Autonomous aerial-vehicle, carrier-landing contest (2001)

Author  KIPR

Video ID : 633

KIPR's first aerial robot contest featuring several middle and high schools from Oklahoma and neighboring states. It was held at the University of Oklahoma's Rawl Engineering Practice Facility. Teams used AR drones and KIPR's CBC2 controller to program the drone and have the drone react autonomously. No human control was used. Four very different approaches are shown to the event, in which the teams programmed their robots to totry land on a moving platform.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Tripteron robot

Author  Clément Gosselin

Video ID : 54

This video demonstrates a 3-DOF decoupled translational parallel robot (Tripteron). References: 1. X. Kong, C.M. Gosselin: Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator, Inte. J. Robot. Res. 21(9), 791-798 (2002); 2. C. Gosselin: Compact dynamic models for the tripteron and quadrupteron parallel manipulators, J. Syst. Control Eng. 223(I1), 1-11 (2009)

CoGiRo

Author  Marc Gouttefarde

Video ID : 45

This video demonstrates a 6-DOF fully constrained 8-cable-driven robot acting in a large workspace on palletizing applications (CoGiRo robot). Reference: J. Lamaury, M. Gouttefarde: Control of a large redundantly actuated cable-suspended parallel robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 4659-4664

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Stanford Sprawl and iSprawl

Author  Sangbae Kim, Jonathan E. Clark, Mark R. Cutkosky

Video ID : 403

The "Sprawl" family of hand-sized hexapedal robots is composed of prototypes designed to test ideas about locomotion dynamics, leg design and leg arrangement and to identify areas that can be improved by shape deposition manufacturing.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Cockroach-like hexapod

Author  Roger D. Quinn

Video ID : 521

A biologically inspired insect-like hexapod developed by Dr. Nelson, Dr. Bachmann, Dr. Quinn, Dr. Watson and Dr. Ritzmann.

Chapter 28 — Force and Tactile Sensing

Mark R. Cutkosky and William Provancher

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

Capacitive tactile sensing

Author  Mark Cutkosky

Video ID : 14

Video demonstrating the capacitive tactile sensing suite on the SRI-Meka-Stanford four-fingered hand built for the DARPA ARM-H Mobile Manipulation program.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Modsnake climbing a tree

Author  Howie Choset

Video ID : 168

The CMU Modsnake climbing a tree and surveying an area from this high vantage point.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

iRobots inspecting interior of Fukushima powerplant

Author  James P. Trevelyan

Video ID : 580

A video timestamped April 17, 2011, with English commentary.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D1 assembly with dual-arm industrial manipulators

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 380

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Fenceless approach in a safe; environment & Gesture Control (00:27); Chapter 3: Cooperative motion (00:57); Chapter 4: Minimal fixtures for maximum flexibility (Scan Objects) (01:36); Chapter 5: Offline preview (02:12); Chapter 6: Task execution (02:26); Chapter 7: Tool changer device (03:49); Chapter 8: Statement (04:11); Chapter 9: Outro (04:39); Chapter 10: The Consortium (05:08). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d1.html