View Chapter

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Shoe decoration using concentric tube robot

Author  Pierre Dupont

Video ID : 251

This 2012 video illustrates bimanual robotic shoe decoration using Swarovsky crystals at a charity event for Boston Children's Hospital in Stuart Weitzman's New York City showroom.

Chapter 0 — Preface

Bruno Siciliano, Oussama Khatib and Torsten Kröger

The preface of the Second Edition of the Springer Handbook of Robotics contains three videos about the creation of the book and using its multimedia app on mobile devices.

Bruno Siciliano — Keynote, February 2017

Author  Bruno Siciliano

Video ID : 847

Bruno Siciliano, Editor of the Springer Handbook of Robotics, gives a keynote during the One SpringerNature event in Barcelona on 7 February 2017.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

3-D passive dynamic walking robot

Author  Steven Collins

Video ID : 532

A passive dynamic walking robot in 3-D developed by Dr.Collins.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Radioactive material handling 1954

Author  James P. Trevelyan

Video ID : 587

This clip shows the use of a remotely-operated arm to protect a worker from nuclear radiation, taken from the 1954 film sponsored by General Electric, The Atom Goes to Sea 1954. The scene is at the Knolls Atomic Power Laboratory in Schenectady, New York. The entire film is available from the Internet Archive.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

RoACH: a 2.4 gram, untethered, crawling hexapod robot

Author  Aaron M. Hoover, Erik Steltz, Ronald S. Fearing

Video ID : 286

The robotic autonomous crawling hexapod (RoACH) is made using lightweight composites with integrated flexural hinges. It is actuated by two shape-memory-alloy wires and controlled by a PIC microprocessor. It can communicate over IrDA and run untethered for more than nine minutes on a single charge.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Collaborative human-focused robotics for manufacturing

Author  CHARM Project Consortium

Video ID : 717

The CHARM project demonstrates methods for interacting with robotic assistants through developments in the perception, communication, control, and safe interaction technologies and techniques centered on supporting workers performing complex manufacturing tasks.

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Shadow Hand

Author  Shadow Robot Company

Video ID : 753

The Shadow Hand is a popular and well-known commercial, anthropomorphic robot hand.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved GasNet visualisation

Author  Phil Husbands

Video ID : 375

The video shows a successfully evolved GasNet controlling a simulated robot engaged in a visual-discrimination task under noisy lighting. The GasNet architecture and all node properties are evolved along with the visual sampling morphology (parts of the visual field used as inputs to the GasNet). A minimal simulation is used which allows transfer to the real robot (see Sussex gantry Video 371). A highly minimal controller and visual morphology have evolved. The system is highly robust, coping with very noisy conditions. As can be seen, the GasNet employs multiple oscillator subcircuits - partly to filter out noise. Work by Tom Smith and Phil Husbands.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Experiments of escorting a target

Author  Gianluca Antonelli, Filippo Arrichiello, Stefano Chiaverini

Video ID : 292

This video shows a multirobot system made up of 6 Khepera II mobile robots performing an escorting/entrapping mission. The robots have to surround an autonomous target (a tennis ball pushed by hand). The system is robust to the loss of one or more robots.

Chapter 60 — Disaster Robotics

Robin R. Murphy, Satoshi Tadokoro and Alexander Kleiner

Rescue robots have been used in at least 28 disasters in six countries since the first deployment to the 9/11 World Trade Center collapse. All types of robots have been used (land, sea, and aerial) and for all phases of a disaster (prevention, response, and recovery). This chapter will cover the basic characteristics of disasters and their impact on robotic design, and describe the robots actually used in disasters to date, with a special focus on Fukushima Daiichi, which is providing a rich proving ground for robotics. The chapter covers promising robot designs (e.g., snakes, legged locomotion) and concepts (e.g., robot teams or swarms, sensor networks), as well as progress and open issues in autonomy. The methods of evaluation in benchmarks for rescue robotics are discussed and the chapter concludes with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption.

Assistive mapping during teleoperation

Author  Alexander Kleiner, Christian Dornhege, Andreas Ciossek

Video ID : 140

This video shows a commercial mapping system that has been developed by the University of Freiburg (A. Kleiner and C. Dornhege) and the telerob GmbH (A. Ciossek) in Germany. The video first shows the physical integration of the mapping system on the telemax bomb-disposal robot. Then, the real-time output of the mapping system superimposed on the video output of the robot's camera is shown.