View Chapter

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Dexmart Hand

Author  Claudio Melchiorri

Video ID : 767

Grasp and manipulation tasks executed by the Dexmart Hand, an anthropomorphic robot hand developed within an European research activity. Detailed aspects of the "twisted-spring" actuation principle are demonstrated.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

An octopus-bioinspired solution to movement and manipulation for soft robots

Author  Marcello Calisti, Michelle Giorelli, Guy Levy, Barbara Mazzolai, Binyamin Hochner, Cecilia Laschi, Paolo Dario

Video ID : 411

A totally soft robotic arm freely moving in water was inspired by the form and morphology of the octopus.

Chapter 44 — Networked Robots

Dezhen Song, Ken Goldberg and Nak-Young Chong

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.


Author  Ken Goldberg, Dezhen Song

Video ID : 83

We describe a networked teleoperation system that enables groups of participants to collaboratively explore real-time remote environments. Participants collaborate using a spatial dynamic voting (SDV) interface which enables them to vote on a sequence of images via a network such as the internet. The SDV interface runs on each client computer and communicates with a central server which collects, displays, and analyzes time sequences of spatial votes. The results are conveyed to the “tele-actor,” a skilled human with cameras and microphones who navigates and performs actions in the remote environment.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Coevolved predator and prey robots

Author  Dario Floreano

Video ID : 38

Coevolved predator and prey robots engaged in a tournament. The predator and prey robot (from left to right) are placed in an arena surrounded by walls and are allowed to interact for several trials starting at different, randomly-generated orientations. Predators are selected on the basis of the percentage of trials in which they are able to catch (i.e., to touch) the prey, and prey on the basis of the percentage of trials in which they were able to escape (i.e., to not be touched by) predators. Predators have a vision system, whereas the prey have only short-range distance sensors, but can go twice as fast as the predator. Collision between robots is detected by a conductive belt at the base of the robots.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Passivity of IPC strategy at 30-Hz sample rate

Author  Stefano Stramigioli

Video ID : 724

In this short video, the effectiveness of the passive sampling approach and IPC control are shown. A "PD" like control is implemented digitally in the classical way and also using IPC and passive sampling. At the used sampling frequency of 30 Hz, it is shown that instability occurs for the standard implementation, but is completely absent in the proposed way.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

IREP tagging spikes

Author  Nabil Simaan

Video ID : 246

This video shows telemanipulation of the IREP (insertible robotic effectors platform). The IREP is a system having 21 controllable axes including two 7-DOF dexterous arms, 3-DOF camera head, an insertion stage, and two grippers [1]. Reference: [1] A. Bajo, R. E. Goldman, L. Wang, D. Fowler, N. Simaan: Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery, Proc. 2012 IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 3381-3387

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Tactile localization of a power drill

Author  Kaijen Hsiao

Video ID : 77

This video shows a Barrett WAM arm tactilely localizing and reorienting a power drill under high positional uncertainty. The goal is for the robot to robustly grasp the power drill such that the trigger can be activated. The robot tracks the distribution of possible object poses on the table over a 3-D grid (the belief space). It then selects between information-gathering, reorienting, and goal-seeking actions by modeling the problem as a POMDP (partially observable Markov decision process) and using receding-horizon, forward search through the belief space. In the video, the inset window with the simulated robot is a visualization of the current belief state. The red spheres sit at the vertices of the object mesh placed at the most likely state, and the dark-blue box also shows the location of the most likely state. The purple box shows the location of the mean of the belief state, and the light-blue boxes show the variance of the belief state in the form of the locations of various states that are one standard deviation away from the mean in each of the three dimensions of uncertainty (x, y, and theta). The magenta spheres and arrows that appear when the robot touches the object show the contact locations and normals as reported by the sensors, and the cyan spheres that largely overlap the hand show where the robot controllers are trying to move the hand.

Chapter 0 — Preface

Bruno Siciliano, Oussama Khatib and Torsten Kröger

The preface of the Second Edition of the Springer Handbook of Robotics contains three videos about the creation of the book and using its multimedia app on mobile devices.

Using the multimedia app on mobile devices

Author  Torsten Kröger

Video ID : 843

The video illustrates how to use the multimedia app for the Second Edition of the Springer Handbook of Robotics. Using a smartphone or tablet PC, users can access each of the more than 700 videos while reading the printed or e-book version of the handbook.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Social learning applied to task execution

Author  Cynthia Breazeal

Video ID : 562

This is a video demonstration of the Leonardo robot integrating learning via tutelage, self motivated learning and preference learning to perform a tangram-like task. First the robot learns a policy for how to operate a remote-control box to reveal key shapes needed for the next task, integrating self-motivated exploration with tutelage. The human can shape what the robot learns through a variety of social means. Once Leo has learned a policy, the robot begins the tangram task, which is to make a sailboat figure out of the colored blocks on the virtual workspace. During this interaction, the person has a preference for which block colors to use (yellow and blue), which he conveys through nonverbal means. The robot learns this preference rule from observing these nonverbal cues. During the task, the robot needs blocks of a certain shape and color and which are not readily available on the workspace, but can be accessed by operating the remote-control box to reveal those shapes. Leo evokes those recently learned policies to access those shapes to achieve the goal of making the sailboat figure.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.


Author  Argo Medical Technologies

Video ID : 508

The ReWalk is a legged exoskeleton designed to help people with paralysis to walk.