View Chapter

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

High-speed magnetic microrobot actuation in a microfluidic chip by a fine V-groove surface

Author  Fumihito Arai

Video ID : 491

This video shows high-speed microrobotic actuation driven by permanent magnets in a microfluidic chip. The microrobot has a milliNewton-level output force from a permanent magnet, micrometer-level positioning accuracy, and drive speed of over 280 mm/s. The riblet surface, which is a regularly arrayed V-groove, reduces fluid friction and enables high-speed actuation. Ni- and Si-composite fabrication was employed to form the optimum riblet shape on the microrobot’s surface by wet and dry etching. The evaluation experiments show that the microrobot can be actuated at a rate of up to 90 Hz, which is more than ten times higher than that of the microrobot without a riblet.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Handling of a single object by multiple mobile robots based on caster-like dynamics

Author  Kazuhiro Kosuge

Video ID : 785

When multiple robots are utilized for the handling of an object, the slippage between wheels and the ground is the most serious challenge for coordinating the multiple robots. A control algorithm has been developed for mobile robots, which assumes they each possess caster-like dynamics.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Dynamic surface grasping with directional adhesion

Author  Elliot W. Hawkes, David L. Christensen, Eric V. Eason, Matthew A. Estrada, Matthew Heverly, Evan Hilgemann, Hao Jiang, Morgan T. Pope, Aaron Parness, Mark R. Cutkosky

Video ID : 413

This video shows applications for perching UAVs and grasping space junk.

The FLEA: Flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism

Author  Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, Kyu-Jin Cho

Video ID : 281

The FLEA: flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism. The robot was created to realize a flea-inspired catapult mechanism with shape-memory-alloy (SMA) spring actuators and a smart composite microstructure. The robot was fabricated with a weight of 1.1 g and a 2 cm body size, so that it can jump a distance of up to 30 times its body size.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

A scene of deictic interaction

Author  Takayuki Kanda

Video ID : 807

This video illustrates the "deictic interaction" in which the robot and a user interact using pointing gestures and verbal-reference terms. The robot has a capability to understand the user's deictic interaction recognizing both the pointing gesture and the reference term. In addition, there is a 'facilitation' mechanism (e.g., the robot engages in real-time joint attention), which makes the interaction smooth and natural.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Dynamic walking of whole-body compliant humanoid COMAN

Author  Chengxu Zhou, Xin Wang, Zhibin Li, Nikolaos Tsagarakis

Video ID : 465

COMAN performing dynamic walking.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Full-body motion transfer under kinematic/dynamic disparity

Author  Sovannara Hak, Nicolas Mansard, Oscar Ramos, Layale Saab, Olivier Stasse

Video ID : 98

Offline full-body motion transfer by taking into account the kinematic and dynamic disparity between the human and the humanoid. Reference: S. Hak, N. Mansard, O. Ramos, L. Saab, O. Stasse: Capture, recognition and imitation of anthropomorphic motion, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 3539–3540; URL: .

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

3-DOF dynamically balanced parallel robot

Author  Clément Gosselin

Video ID : 49

This video demonstrates a 3-DOF dynamically balanced parallel robot. References: 1. S. Foucault, C. Gosselin: On the development of a planar 3-DOF reactionless parallel mechanism, Proc. ASME Mech. Robot. Conf., Montréal (2002); 2. Y. Wu, C. Gosselin: Synthesis of reactionless spatial 3-DOFf and 6-DOF mechanisms without separate counter-rotations, Int. J. Robot. Res. 23(6), 625-642 (2004)

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Sena wheelchair: Autonomous navigation at University of Malaga (2007)

Author  Jose Luis Blanco

Video ID : 708

This experiment demonstrates how a reactive navigation method successfully enables our robotic wheelchair SENA to navigate reliably in the entrance of our building at the University of Malaga (Spain). The robot navigates autonomously amidst dozens of students while avoiding collisions. The method is based on a space transformation, which simplifies finding collision-free movements in real-time despite the arbitrarily complex shape of the robot and its kinematic restrictions.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Remote handling and inspection with the VT450

Author  James P. Trevelyan

Video ID : 592

Promotional video for an inspection robot.