View Chapter

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

iRobots inspecting interior of Fukushima powerplant

Author  James P. Trevelyan

Video ID : 580

A video timestamped April 17, 2011, with English commentary.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Security: Facial recognition

Author  Ali Mollahosseini, Mohammad Mahoor

Video ID : 553

Video of face tracking and facial-landmark-point extraction of Ali's face for a security robot.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM

Author  Cyrill Stachniss

Video ID : 449

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap. 46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robot. Res. 31(11), 1219--1230 (2012).

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Indoor, urban aerial vehicle navigation

Author  Jonathan How

Video ID : 703

The MIT indoor multi-vehicle testbed is specially designed to study long duration missions in a controlled, urban environment. This testbed is being used to implement and analyze the performance of techniques for embedding the fleet and vehicle health state into the mission and UAV planning. More than four air vehicles can be flown in a typical-sized room, and it takes no more than one operator to set up the platform for flight testing at any time of day and for any length of time. At the heart of the testbed is a global metrology system that yields very accurate, high bandwidth position and attitude data for all vehicles in the entire room.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Intrinsically elastic robots: The key to human like performance (Best Video Award)

Author  Sami Haddadin, Felix Huber, Kai Krieger, Roman Weitschat, Alin Albu-Schäffer, Sebastian Wolf, Werner Friedl, Markus Grebenstein, Florian Petit, Jens Reinecke, Roberto Lampariello

Video ID : 475

The advantages of intrinsically elastic robots on their performance are shown by the examples of the DLR LWR III and the DLR Hand Arm System.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm Light Exoskeleton (ALEx)

Author  Massimo Bergamasco

Video ID : 146

The video shows the Arm Light Exoskeleton (ALEx) and, in particular, its capability for tracking the operator's movements.

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

WINBOT W710 versus HOBOT 168 (auf Deutsch)

Author  Erwin Prassler

Video ID : 735

Video (in German) compares performance of two robotic window cleaners, namely the Winbot W710 and Hobot 168.

Chapter 7 — Motion Planning

Lydia E. Kavraki and Steven M. LaValle

This chapter first provides a formulation of the geometric path planning problem in Sect. 7.2 and then introduces sampling-based planning in Sect. 7.3. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 7.4. These approaches provide theoretical guarantees and for simple planning instances they outperform samplingbased planners. Section 7.5 considers problems that involve differential constraints, while Sect. 7.6 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 7.8 addresses some important andmore advanced topics related to motion planning.

Motion planning in multi-robot scenario.

Author  Jamie Snape, Jur van den Berg, Stephen J. Guy, Dinesh Manocha

Video ID : 22

Motion planning can be used for multiple robot scenarios. In this video, each iRobot Roomba senses its surroundings and acts independently without central coordination or communication with other robots. This approach uses the current position and the velocity of other robots to predict their future trajectories in order to avoid collisions.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

New Mexico Elementary Botball 2014 - Teagan's first-ever run.

Author  Jtlboys3

Video ID : 635

This video shows some elementary-school students running their line-following code (written in C) on a robot at the local Junior Botball Challenge event. Details from: https://www.juniorbotballchallenge.org .

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Exploitation of social cues to speed up learning

Author  Sylvain Calinon, Aude Billard

Video ID : 106

Use of social cues to speed up the imitation-learning process, with gazing and pointing information to select the objects relevant for the task. Reference: S. Calinon, A.G. Billard: Teaching a humanoid robot to recognize and reproduce social cues, Proc. IEEE Int. Symp. Robot Human Interactive Communication (Ro-Man), Hatfield (2006), pp. 346–351; URL: http://lasa.epfl.ch/research/control_automation/interaction/social/index.php .