View Chapter

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Sparse pose adjustment

Author  Kurt Konolige

Video ID : 447

This video shows an illustration of pose-graph SLAM optimization, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using sparse pose adjustment. Reference: K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent: Sparse pose adjustment for 2-D mapping, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Taipei (2010).

Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping

Author  Udo Frese

Video ID : 441

This video provides an illustration of graph-based SLAM, described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016). Reference: U. Frese: Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping, Auton. Robot. 21(2), 103–122 (2006).

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

IHMC/Yobotics biped

Author  Jerry Pratt

Video ID : 530

A 12 DOF biped walking robot driven by linear series elastic actuators developed by researchers at IHMC and Yobotics.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Robotic insects make first controlled flight

Author  Robert J. Wood

Video ID : 697

First flight results of the RoboBee project.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM (Example 2)

Author  Giorgio Grisetti

Video ID : 443

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), and performed in a parking garage in Stanford, CA.

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

DTAM: Dense tracking and mapping in real-time

Author  Richard A. Newcombe, Steven J. Lovegrove, Andrew J. Davison

Video ID : 124

This video demonstrates the system described in the paper, "DTAM: Dense Tracking and Mapping in Real-Time" by Richard Newcombe, Steven Lovegrove and Andrew Davison for ICCV 2011.

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

An omnidirectional mobile robot with active caster wheels

Author  Woojin Chung

Video ID : 325

This video shows a holonomic omnidirectional mobile robot with two active and two passive caster wheels. Each active caster is composed of two actuators. The first actuator drives a wheel; the second actuator steers the wheel orientation. Although the mechanical structure of the driving mechanisms becomes a little complicated, conventional tires can be used for omnidirectional motions. Since the robot is overactuated, four actuators should be carefully controlled.

Chapter 22 — Modular Robots

I-Ming Chen and Mark Yim

This chapter presents a discussion of modular robots from both an industrial and a research point of view. The chapter is divided into four sections, one focusing on existing reconfigurable modular manipulators typically in an industry setting (Sect. 22.2) and another focusing on self-reconfigurable modular robots typically in a research setting (Sect. 22.4). Both sections are sandwiched between the introduction and conclusion sections.

This chapter is focused on design issues. Rather than a survey of existing systems, it presents some of the existing systems in the context of a discussion of the issues and elements in industrial modular robotics and modular robotics research. The reader is encouraged to look at the references for further discussion on any of the presented topics.

4x4ht4a

Author  Hod Lipson

Video ID : 2

Self-reconfiguring cubes that reproduce a chain of cubes. Reference: V. Zykov, E. Mytilinaios, B. Adams, H. LipsonRobotics: Self-reproducing machines, Nature 435, 163-164 (2005); doi:10.1038/435163a

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Shoe decoration using concentric tube robot

Author  Pierre Dupont

Video ID : 251

This 2012 video illustrates bimanual robotic shoe decoration using Swarovsky crystals at a charity event for Boston Children's Hospital in Stuart Weitzman's New York City showroom.

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Shadow Hand

Author  Shadow Robot Company

Video ID : 753

The Shadow Hand is a popular and well-known commercial, anthropomorphic robot hand.