View Chapter

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube: Arm with high and low stiffness preset

Author  Centro di Ricerca "E. Piaggio"

Video ID : 470

A modular 2-DOF arm, built with VSA-cube actuation units, performing high- and low-stiffness behaviors.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of Kuka KR270 : Trajectory with load

Author  Maxime Gautier

Video ID : 487

This video shows a trajectory with a known payload mass used to identify the dynamic parameters of the links, load, joint drive gains and gravity compensator of a heavy industrial Kuka KR 270 manipulator Details and results are given in the paper: A. Jubien, M. Gautier, Global identification of spring balancer, dynamic parameters and drive gains of heavy industrial robots, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Tokyo (2013), pp. 1355-1360

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Teleoperated humanoid robot - HRP: Tele-driving of lifting vehicle

Author  Masami Kobayashi, Hisashi Moriyama, Toshiyuki Itoko, Yoshitaka Yanagihara, Takao Ueno, Kazuhisa Ohya, Kazuhito Yokoi

Video ID : 319

This video shows the teleoperation a humanoid robot HRP using whole-body multimodal tele-existence system. The human operator teleoperates the humanoid robot to drive a lifting vehicle in a warehouse. Presented at ICRA 2002.

Chapter 15 — Robot Learning

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell and Stefan Schaal

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

Inverted helicopter hovering

Author  Pieter Abbeel

Video ID : 352

An example of simulation-based optimization using a learned forward model. This brief video shows a successful application of reinforcement learning to the design of a controller for sustained inverted flight of an autonomous helicopter. The authors began by learning a stochastic, nonlinear forward model of the helicopter’s dynamics. Then, a reinforcement learning algorithm was applied to automatically learn a controller for autonomous inverted hovering. The video illustrates Section 15.2.5 -- Applications of Model Learning, Springer Handbook of Robotics, 2nd ed (2016); Reference: A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang: Autonomous inverted helicopter flight via reinforcement learning, IX Int. Symp. Exp. Robot. 2004, Springer Tract. Adv. Robot. 21, 363-372 (2006)

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D4 welding robot assistant

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 383

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Job arrives (0:43); Chapter 3: Programming of weld seams (selection of seams) (01:08); Chapter 4: Scanning of seams (01:45); Chapter 5: Error recovery (02:13); Chapter 6: Welding I (02:33); Chapter 7: Welding II (02:57); Chapter 8: Seam inspection (03:32); Chapter 9: Statement (in German with English subtitles) (04:06); Chapter 10: Outro (04:32); Chapter 11: SMErobotics statement (04:55). For details, please visit:

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

6-DOF statically balanced parallel robot

Author  Clément Gosselin

Video ID : 48

This video demonstrates a 6-DOF statically balanced parallel robot. References: 1. C. Gosselin, J. Wang, T. Laliberté, I. Ebert-Uphoff: On the design of a statically balanced 6-DOF parallel manipulator, Proc. IFToMM Tenth World Congress Theory of Machines and Mechanisms, Oulu (1999) pp. 1045-1050; 2. C. Gosselin, J. Wang: On the design of statically balanced motion bases for flight simulators, Proc. AIAA Modeling and Simulation Technologies Conf., Boston (1998), pp. 272-282; 3. I. Ebert-Uphoff, C. Gosselin: Dynamic modeling of a class of spatial statically-balanced parallel platform mechanisms, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Detroit (1999), Vol. 2, pp. 881-888

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

Linear-to-rotary motion converters for three-dimensional microscopy

Author  Lixin Dong

Video ID : 492

This video shows the application of a linear-to-rotary motion converter in 3-D imaging using a scanning electron microscope. The motion converter consists of a SiGe/Si dual-chirality helical nanobelt (DCHNB). The experiment was done using nanorobotic manipulation. Analytical and experimental investigation shows that the motion conversion has excellent linearity for small deflections. The stiffness (0.033 N/m) is much smaller than that of bottom-up synthesized helical nanostructures, which is promising for high-resolution force measurement in nanoelectromechanical systems (NEMS). The ultracompact size makes it also possible for DCHNBs to serve as rotary stages for creating 3-D scanning probe microscopes or microgoniometers.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Body Extender transversal joint

Author  Massimo Bergamasco

Video ID : 149

The video shows a CAD 3-D animation of the patented actuation mechanism of the Body Extender transversal joint.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Human-robot teaming in a search-and-retrieve task

Author  Cynthia Breazeal

Video ID : 555

This video shows an example from a human participant study examining the role of nonverbal social signals on human-robot teamwork for a complex search-and-retrieve task. In a controlled experiment, we examined the role of backchanneling and task complexity on team functioning and perceptions of the robots’ engagement and competence. Seventy three participants interacted with autonomous humanoid robots as part of a human-robot team: One participant, one confederate (a remote operator controlling an aerial robot), and three robots (2 mobile humanoids and an aerial robot). We found that, when robots used backchanneling, team functioning improved and the robots were seen as more engaged.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Dive with REMUS

Author  Woods Hole Oceanographic Institution

Video ID : 87

Travel with a REMUS 100 autonomous, underwater vehicle on a dive off the Carolina coast to study the connection between the physical processes in the ocean at the edge of the continental shelf and the things that live there. Video footage by Chris Linder. Funding by the Department of the Navy, Science & Technology; and Centers for Ocean Sciences Education Excellence (COSEE).