View Chapter

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Mobile-robot, autonomous navigation in Gracia district, Barcelona

Author  Joan Perez

Video ID : 712

This video demonstrates a fully autonomous navigation solution for mobile robots operating in urban pedestrian areas. Path planning is performed by a graph search on a discretized grid of the workspace. Obstacle avoidance is performed by a slightly modified version of the dynamic-window approach.

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Autonomous sub-tracks control

Author  Field Robotics Group, Tohoku University

Video ID : 190

Field Robotics Group, Tohoku University, developed an autonomous controller for the tracked vehicle (Kenaf) to generate terrain-reflective motions of the sub-tracks. Terrain information is obtained using laser range sensors that are located on both sides of the Kenaf. The videoclip shows the basic function of the controller in a simple environment.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

AMASC - changing stiffness

Author  Jonathan Hurst et al.

Video ID : 468

AMASC variable stiffness actuator: changing stiffness phase.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping

Author  Udo Frese

Video ID : 441

This video provides an illustration of graph-based SLAM, described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016). Reference: U. Frese: Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping, Auton. Robot. 21(2), 103–122 (2006).

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Whole-body "pivoting" manipulation

Author  Eiichi Yoshida

Video ID : 595

The humanoid robot performs "pivoting" manipulation to carry a bulky object without lifting. A coarse path of the object towards its goal position is first planned to compute the trajectory of the hands which perform the manipulation. Then foot positions are determined along the object path, from which the COM trajectory is derived using the dynamic walking-pattern generator. Those tasks are provided to the inverse kinematics to generate the coordinated arm and leg motion for this complex manipulation. The second video shows the motion planning combining pivoting manipulation and free walking motion in a more complex environment.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Avian-inspired perching mechanism with UAV

Author  Courtney E. Doyle, Justin J. Bird, Taylor A. Isom, Jason C. Kallman, Daman F. Bareiss, David J. Dunlop, Raymond J. King, Jake J. Abbott, Mark A. Minor

Video ID : 415

This completely passive mechanism enables a quadrotor to perch using only the weight of the quadrotor to grip the perch. The method is inspired by a tendon that allows birds to sleep while perching. More details can be found in the paper C. Doyle, J. Bird, T. Isom, C. Johnson, J. Kallman, J. Simpson, R. King, J. Abbott, M. Minor: Avian-inspired passive perching mechanism for robotic rotorcraft, Proc. IEEE Conf. Intell. Robot. Syst. (IROS), San Francisco (2011), pp. 4975-4980; https://faculty.utah.edu/u0240615-Mark_A_Minor/bibliography/index.hml

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

RDP experimental results

Author  Nabil Simaan

Video ID : 247

Demonstrates a prototype system for transurethral bladder cancer resection. This robot has a 5 mm snake with two segments and three working channels including a custom-made fiberscope, laser ablation and a gripper [1-3]. References: [1] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: A pilot ex-vivo evaluation of a telerobotic system for transurethral intervention and surveillance, The 5th Hamlyn Symp. Medical Robotics (2012), pp. 3-4; [2] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 5817-5822; [3] R. E. Goldman, A. Bajo, L. S. MacLachlan, R. Pickens, S. D. Herrell, N. Simaan: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Trans. Biomed. Eng. 60(4), 918-925 (2013)

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

A new form of peristaltic locomotion in a robot

Author  Alexander Boxerbaum

Video ID : 287

This robotic concept uses a braided mesh that can be continuously deformed to create smooth waves of motion. The improvements in kinematics result in a much faster and effective motion.

Chapter 75 — Biologically Inspired Robotics

Fumiya Iida and Auke Jan Ijspeert

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biologicalmodels ofmotion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].

RobotRoach with adaptive gait-pattern variations

Author  Fumiya Iida, Auke Ijspeert

Video ID : 112

This video presents variations of adaptive-gait patterns inspired by insect locomotion. The computational models of central pattern generators were implemented on the physical platform to investigate its robustness and its flexibility of locomotion in many variations of its environment.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Resilent machines through continuous self-modeling

Author  Josh Bongard, Victor Zykov, Hod Lipson

Video ID : 114

This video demonstrates a typical experiment with a resilent machine.