View Chapter

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

COMRADE: Compliant motion research and development environment

Author  Joris De Schutter, Herman Bruyninckx, Hendrik Van Brussel et al.

Video ID : 691

The video collects works on force control developed in the 1970s-1980s and 1990s at the Department of Mechanical Engineering of the Katholieke Universiteit Leuven, Belgium. The tasks were programmed and simulated using the task-frame-based software package COMRADE (compliant motion research and development environment). The video was recorded in the mid-1990s. The main references for the video are: 1. H. Van Brussel, J. Simons: The adaptable compliance concept and its use for automatic assembly by active force feedback accommodations, Proc. 9th Int. Symposium Indust. Robot., Washington (1979), pp.167-181 2. J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Control 27(5), 1109-1113 (1982) 3. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18-33 (1988) 3.J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3-17 (1988) 4. W. Witvrouw, P. Van de Poel, H. Bruyninckx, J. De Schutter: ROSI: A task specification and simulation tool for force-sensor-based robot control, Proc. 24th Int. Symp. Indust. Robot., Tokyo (1993), pp. 385-392 5. W. Witvrouw, P. Van de Poel, J. De Schutter: COMRADE: Compliant motion research and development environment, Proc. 3rd IFAC/IFIP Workshop on Algorithms and Architecture for Real-Time Control. Ostend (1995), pp. 81-87 6. H. Bruyninckx, S. Dutre, J. De Schutter: Peg-on-hole, a model-based solution to peg and hole alignment, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Nagoya (1995), pp. 1919-1924 7. M. Nuttin, H. Van Brussel: Learning the peg-into-hole assembly operation with a connectionist reinforcement technique, Comput. Ind. 33(1), 101-109 (1997)

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Autonomous aerial-vehicle, carrier-landing contest (2001)

Author  KIPR

Video ID : 633

KIPR's first aerial robot contest featuring several middle and high schools from Oklahoma and neighboring states. It was held at the University of Oklahoma's Rawl Engineering Practice Facility. Teams used AR drones and KIPR's CBC2 controller to program the drone and have the drone react autonomously. No human control was used. Four very different approaches are shown to the event, in which the teams programmed their robots to totry land on a moving platform.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Influence of response time

Author  Takayuki Kanda

Video ID : 806

This video illustrates the importance of response time in interactions with a social robot. In the first part of the study, it was revealed that it is hard to wait for more than two seconds. In the second part of the study, a technique to use a "conversational filler" is developed, which moderates the frustrations of waiting too long.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Interactive perception of articulated objects

Author  Roberto Martin-Martin

Video ID : 676

Interactive perception of articulated objects with multilevel, recursive estimation based on task-specific priors.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Region-pointing gesture

Author  Takayuki Kanda

Video ID : 811

This short video explains what "region pointing" is. While it known that there are a variety of pointing gestures, in region pointing, unlike in other pointing gestures where the pointing arm is fixed, the arm moves as if it depicts a circle, which evokes the region it refers to.

Chapter 55 — Space Robotics

Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger and Roberto Lampariello

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

DLR telepresence demo of removal of a cover

Author  Jordi Artigas, Gerd Hirzinger

Video ID : 337

Telepresence with force reflection using DLR’s light-weight robots as teleoperator-input devices.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Aiko obstacle-aided locomotion

Author  Pål Liljebäck

Video ID : 253

Video of Aiko snake robot developed at the Norwegian University of Science and Technology (NTNU)/SINTEF Advanced Robotics Laboratory. In this video the robot uses obstacles to propel itself.

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

IBVS on a 6-DOF robot arm (2)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 60

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and a current interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.3.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

1961 nuclear-reactor meltdown : The SL-1 accident - United States Army Documentary - WDTVLIVE42

Author  James P. Trevelyan

Video ID : 589

This archive film, though long, provides graphic details on a relatively modest nuclear accident illustrating the difficulties that still face researchers working to provide robotic solutions.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

CoGiRo

Author  Marc Gouttefarde

Video ID : 45

This video demonstrates a 6-DOF fully constrained 8-cable-driven robot acting in a large workspace on palletizing applications (CoGiRo robot). Reference: J. Lamaury, M. Gouttefarde: Control of a large redundantly actuated cable-suspended parallel robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 4659-4664