View Chapter

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Sensor-based trajectory deformation and docking for nonholonomic mobile robots

Author  Florent Lamiraux

Video ID : 80

This video demonstrates motion planning and reactive obstacle avoidance for nonholonomic robots. A mobile robot with a trailer is asked to park into a U-shaped obstacle. Motion planning is performed by a visibility-based PRM algorithm using a flatness-based steering method built on convex combinations of canonical curves. The planned trajectory is then followed by the robot while detecting obstacles using a laser scanner. The current trajectory is locally deformed in order to avoid obstacles and to end at the detected U-shaped obstacle.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Rolling Justin - a platform for mobile manipulation

Author  DLR

Video ID : 786

Rolling Justin is a four-wheeled, mobile manipulator, which is a research platform that enables implementation and demonstration of sophisticated control algorithms and dexterous manipulation.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Undulatory gaits in a centipede millirobot

Author  Katie L. Hoffman, Robert J. Wood

Video ID : 407

This video shows performances of several gait patterns which are specified by leg-cycle frequency and phase difference between legs on each side in a centipede-inspired multi-legged robot.

Chapter 22 — Modular Robots

I-Ming Chen and Mark Yim

This chapter presents a discussion of modular robots from both an industrial and a research point of view. The chapter is divided into four sections, one focusing on existing reconfigurable modular manipulators typically in an industry setting (Sect. 22.2) and another focusing on self-reconfigurable modular robots typically in a research setting (Sect. 22.4). Both sections are sandwiched between the introduction and conclusion sections.

This chapter is focused on design issues. Rather than a survey of existing systems, it presents some of the existing systems in the context of a discussion of the issues and elements in industrial modular robotics and modular robotics research. The reader is encouraged to look at the references for further discussion on any of the presented topics.

ATRON robot showing robust and reversible execution of self-reconfiguration sequences

Author  Ulrik Pagh Schultz

Video ID : 5

ATRON robot showing robust and reversible execution of self-reconfiguration sequences.

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

First recorded dive of the deep-sea ROV Hamire at a depth of 5,882 m

Author  Hyun-Taek Choi

Video ID : 796

This video shows the first deep-sea trial of the ROV Hamire developed by KRISO (Korea Research Institute of Ships and Ocean Engineering) at a depth of 5,882 m.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

ISAC: A demonstration

Author  Kazukiko Kawamura, Sugato Bagchi, Robert Todd Pack, Pabolo Martinez

Video ID : 614

At the Intelligent Robotics Laboratory of the Center for Intelligent Systems at Vanderbilt University, the authors developed a humanoid system called the Intelligent Soft-Arm Control. ISAC was originally developed for a robotic assistance system for the physically disabled.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Bozena 5 remotely-operated robot vehicle

Author  James P. Trevelyan

Video ID : 574

This is an example of several videos available on YouTube showing this Slovak-designed and -constructed machine. It shows the vehicle being used in different test areas with brief glimpses of other mine-resistant vehicles. BOZENA 5 was designed to support mine-clearance teams operating in Croatia, Serbia and Bosnia Herzegovina, removing mines left over from the civil war in the 1990s. In the areas affected by mines, one of the biggest challenges is the rapid growth of vegetation during the summer months. Bare ground can be submerged in vegetation over 1 m high after just two or three weeks. Military defensive positions were often set up on uneven ground with steep slopes which were then mined to deter attacks from other parties in the conflict. Mines were also removed from these defensive minefields and re-laid along routes used for smuggling goods and people. The smugglers would be able to charge higher prices because only they knew how to safely move along the routes. The smuggling routes (and their parent organizations) persisted long after the end of the formal conflict, complicating mine-clearance operations. That is why small, remote control vehicles like this proved to be so effective. They were highly manoeuvrable, easily transported, adaptable with different tools and equipment, and could be safely operated. The machine comes with an armored operator cabin and the whole system can be packed and deployed from a 40-foot shipping container weighing 16 tons. The greatest threat to the de-miners was from bounding fragmentation mines which typically had a lethal radius of several hundred meters. These vehicles provided a means to operate safely in areas affected by these mines. One of the major disadvantages of these machines is the destruction of surface vegetation that can lead to rapid erosion, if there is heavy rain in the weeks following mine clearance operations. Sudden heavy downpours are common in summer months. Therefore, they had to be used with considerable discretion and local knowledge.

Chapter 54 — Industrial Robotics

Martin Hägele, Klas Nilsson, J. Norberto Pires and Rainer Bischoff

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1:5million units, some 171 000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with differentmechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be presented. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

SMErobotics Demonstrator D1 assembly with dual-arm industrial manipulators

Author  Martin Haegele, Thilo Zimmermann, Björn Kahl

Video ID : 380

SMErobotics: Europe's leading robot manufacturers and research institutes have teamed up with the European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing - to make the vision of cognitive robotics a reality in a key segment of EU manufacturing. Funded by the European Union 7th Framework Programme under GA number 287787. Project runtime: 01.01.2012 - 30.06.2016 For a general introduction, please also watch the general SMErobotics project video (ID 260). About this video: Chapter 1: Introduction (0:00); Chapter 2: Fenceless approach in a safe; environment & Gesture Control (00:27); Chapter 3: Cooperative motion (00:57); Chapter 4: Minimal fixtures for maximum flexibility (Scan Objects) (01:36); Chapter 5: Offline preview (02:12); Chapter 6: Task execution (02:26); Chapter 7: Tool changer device (03:49); Chapter 8: Statement (04:11); Chapter 9: Outro (04:39); Chapter 10: The Consortium (05:08). For details, please visit: http://www.smerobotics.org/project/video-of-demonstrator-d1.html

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved bipedal walking

Author  Phil Husbands

Video ID : 374

The video shows stages of evolution of bipedal walking in a simulated, bipedal robot using realistic physics (from the work by Torsten Reil and originating at Sussex University). This was the first example of successfully- evolved bipedal gaits produced in a physics-engine-based simulation. The problem is inherently dynamically unstable, thus making it an interesting challenge.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Extended Kalman-filter SLAM

Author  John Leonard

Video ID : 455

This video shows an illustration of Kalman filter SLAM, as described in Chap. 46.3.1, Springer Handbook of Robotics, 2nd edn (2016). References: J.J. Leonard, H. Feder: A computationally efficient method for large-scale concurrent mapping and localization, Proc. Int. Symp. Robot. Res. (ISRR), Salt Lake City (2000), pp. 169–176.