View Chapter

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Virtual whiskers - Highly responsive robot collision avoidance

Author  Thomas Schlegl, Torsten Kröger, Andre Gaschler, Oussama Khatib, Hubert Zangl

Video ID : 758

All mammals but humans use whiskers in order to rapidly acquire information about objects in the vicinity of the head. Collisions of the head and objects can be avoided as the contact point is moved from the body surface to the whiskers. Such a behavior is also highly desirable during many robot tasks such as for human-robot interaction. This video shows the use of novel capacitive proximity sensors so that robots can sense when they approach a human (or an object) and react before they actually collide with it. The sensors are flexible and thin so that they feature skin-like properties and can be attached to various robotic links and joint shapes. In comparison to capacitive proximity sensors, the proposed virtual whiskers offer better sensitivity towards small conductive as well as non-conductive objects. Equipped with the new proximity sensors, a seven-joint robot for human-robot interaction tasks demonstrates the efficiency and responsiveness in this video. Reference: T. Schlegl, T. Kröger, A. Gaschler, O. Khatib, H. Zangl: Virtual whiskers - Highly responsive robot collision avoidance, Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Tokyo (2013)

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Body Extender - A fully powered whole-body exoskeleton

Author  Massimo Bergamasco

Video ID : 152

The video shows the main functionalities and capabilities of the fully-powered, whole-body exoskeleton Body Extender.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Neptus command and control infrastructure

Author  Laboratario de Sistemas e Tecnologias Subaquaticas - Porto University

Video ID : 324

See how Neptus is used to plan, simulate, monitor and review missions performed by autonomous vehicles. Neptus, originally developed at the Underwater Systems and Technology Laboratory, is open source software available from http://github.com/LSTS/neptus / NOPTILUS project [NOPTILUS is funded by European Community's Seventh Framework Programme ICT-FP]

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Motion prediction using the Bayesian-occupancy-filter approach (Inria)

Author  Christian Laugier, E-Motion Team

Video ID : 420

This video illustrates the prediction capabilities of the Bayesian-occupancy-filter approach which is able to maintain an updated record and estimate of the relatives positions and velocities of an autonomous vehicle and of a detected-and-tracked moving obstacle (e.g., a pedestrian in the video). The approach still works despite temporary obstructions. The method has been patented in, and commercialized since, 2005. More details in [62.60].

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

World Robot Olympiad Japan 2014

Author  The Japan Times

Video ID : 637

Published on Sep 29, 2014: On Sept. 21, students from around Japan gathered at the Kanagawa Institute of Technology to test their skills as robot designers for a chance to compete in the upcoming World Robot Olympiad, to be held in Sochi, Russia. Details from: http://www.wroboto.org/ .

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Experience-based learning of high-level task representations: Reproduction (3)

Author  Monica Nicolescu

Video ID : 33

This is a video recorded in early 2000s, showing a Pioneer robot learning to traverse "gates" and move objects from a source place to a destination - the robot is reproducing the learned task. The robot training stage is also shown in a related video in this chapter. Reference: M. Nicolescu, M.J. Mataric: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybernet. A31(5), 419-430 (2001)

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Three-fingered robot hand

Author  Masatoshi Ishikawa

Video ID : 642

Fig. 4.5 to Fig. 4.7 Three-fingered robot hand moving very fast.

Chapter 7 — Motion Planning

Lydia E. Kavraki and Steven M. LaValle

This chapter first provides a formulation of the geometric path planning problem in Sect. 7.2 and then introduces sampling-based planning in Sect. 7.3. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 7.4. These approaches provide theoretical guarantees and for simple planning instances they outperform samplingbased planners. Section 7.5 considers problems that involve differential constraints, while Sect. 7.6 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 7.8 addresses some important andmore advanced topics related to motion planning.

Kinodynamic motion planning for a car-like robot

Author  Caleb Voss

Video ID : 24

In this video, the objective of the car is to reach a goal location by jumping over a ramp and pushing a block out of the way. This problem requires kinodynamic motion planning for a car-like robot using a physics simulator. This video was generated using the software tools OMPL, Blender, and MORSE.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

OctArms I-V

Author  Ian Walker

Video ID : 158

Video showing five different iterations of the OctArm continuum manipulator.

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Tactile exploration and modeling using shape primitives

Author  Francesco Mazzini

Video ID : 76

This video shows a robot performing tactile exploration and modeling of a lab-constructed scene that was designed to be similar to those found in interventions for underwater oil spills (leaking pipe). Representing the scene with geometric primitives enables the surface to be described using only sparse tactile data from joint encoders. The robot's movements are chosen to maximize the expected increase in knowledge about the scene.