Chapter 10 — Redundant Robots

FlexIRob - Teaching null-space constraints in physical human-robot interaction

The video presents an approach utilizing the physical interaction capabilities of compliant robots with data-driven and model-free learning in a coherent system in order to make fast reconfiguration of redundant robots feasible. Users with no particular robotics knowledge can perform this task in physical interaction with the compliant robot, for example, to reconfigure a work cell due to changes in the environment. For fast and efficient learning of the respective null-space constraints, a reservoir neural network is employed. It is embedded in the motion controller of the system, hence allowing for execution of arbitrary motions in task space. We describe the training, exploration, and the control architecture of the systems and present an evaluation of the KUKA Light-Weight Robot (LWR). The results show that the learned model solves the redundancy resolution problem under the given constraints with sufficient accuracy and generalizes to generate valid joint-space trajectories even in untrained areas of the workspace.
AMARSi Consortium
818