View Chapter

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Task-consistent, obstacle avoidance for mobile manipulation

Author  Oliver Brock, Oussama Khatib, Sriram Viji

Video ID : 784

This robot can avoid moving obstacles with real-time path modification by using an elastic-strip framework. However, the real-time path modification can interfere with task execution. The proposed task-consistent, elastic planning method can ensure the task execution while achieving obstacle avoidance.

Chapter 71 — Cognitive Human-Robot Interaction

Bilge Mutlu, Nicholas Roy and Selma Šabanović

A key research challenge in robotics is to design robotic systems with the cognitive capabilities necessary to support human–robot interaction. These systems will need to have appropriate representations of the world; the task at hand; the capabilities, expectations, and actions of their human counterparts; and how their own actions might affect the world, their task, and their human partners. Cognitive human–robot interaction is a research area that considers human(s), robot(s), and their joint actions as a cognitive system and seeks to create models, algorithms, and design guidelines to enable the design of such systems. Core research activities in this area include the development of representations and actions that allow robots to participate in joint activities with people; a deeper understanding of human expectations and cognitive responses to robot actions; and, models of joint activity for human–robot interaction. This chapter surveys these research activities by drawing on research questions and advances from a wide range of fields including computer science, cognitive science, linguistics, and robotics.

Designing robot learners that ask good questions

Author  Maya Cakmak, Andrea Thomaz

Video ID : 237

Programming new skills on a robot should take minimal time and effort. One approach to achieve this goal is to allow the robot to ask questions. This idea, called active learning, has recently caught a lot of attention in the robotics community. However, it has not been explored from a human-robot interaction perspective. We identify three types of questions (label, demonstration, and feature queries) and discuss how a robot can use these while learning new skills. Then, we present an experiment on human question-asking which characterizes the extent to which humans use these question types. Finally, we evaluate the three types of question within a human-robot teaching interaction. We investigate the ease with which different types of questions are answered and whether or not there is a general preference of one type of question over another. Based on our findings from both experiments, we provide guidelines for designing question-asking behaviors for a robot learner.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

A miniature 7g jumping robot

Author  Mirko Kovac, Martin Fuchs, Andre Guignard, Jean-Christophe Zufferey, Dario Floreano

Video ID : 279

Jumping can be a very efficient mode of locomotion for small robots to overcome large obstacles and travel in rough, natural terrain. We present the development and characterization of a novel 5 cm, 7 g jumping robot. It can jump obstacles more than 27 times its own size and outperforms existing jumping robots by one order of magnitude with respect to jump height per weight and jump height per size. It employs elastic elements in a four bar linkage leg system to enable very powerful jumps and adjustments of the jumping force, take-off angle and force profile during the acceleration phase. This 2 min video includes footage of jumping desert locusts, computer aided design (CAD) animations, close ups of the jumps using high-speed imaging at 1000 frames/s and the robot moving in rough terrain.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

DART: Dense articulated real-time tracking

Author  Tanner Schmidt, Richard Newcombe, Dieter Fox

Video ID : 673

This project aims to provide a unified framework for tracking arbitrary articulated models, given their geometric and kinematic structure. Our approach uses dense input data (computing an error term on every pixel) which we are able to process in real-time by leveraging the power of GPGPU programming and very efficient representation of model geometry with signed-distance functions. This approach has proven successful on a wide variety of models including human hands, human bodies, robot arms, and articulated objects.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of a parallel robot: Trajectory with load

Author  Maxime Gautier

Video ID : 485

This video shows a trajectory with a known mass payload attached to the platform, used to identify the dynamic parameters and joint drive gains of a parallel prototype robot Orthoglyde. Details and results are given in the paper: S. Briot, M. Gautier: Global identification of joint drive gains and dynamic parameters of parallel robots, Multibody Syst. Dyn. 33(1), 3-26 (2015); doi 10.1007/s11044-013-9403-6

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Experiments of spatial impedance control

Author  Fabrizio Caccavale, Ciro Natale, Bruno Siciliano, Luigi Villani

Video ID : 686

The videod results of an experimental study of impedance control schemes for a robot manipulator in contact with the environment are presented. Six-DOF interaction tasks are considered that require the implementation of a spatial impedance described in terms of both its translational and its rotational parts. Two representations of end-effector orientation are adopted, namely, Euler angles and quaternions, and the implications for the choice of different orientation displacements are discussed. The controllers are tested on an industrial robot with open-control architecture in a number of case studies. This work was published in A. Casals, A.T. de Almeida (Eds.): Experimental Robotics V, Lect. Note. Control Inform. Sci. 232 (Springer, Berlin, Heidelberg 1998)

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Visual communicative nonverbal behaviors of the Sunflower robot

Author  Kerstin Dautenhahn

Video ID : 219

The video illustrates the experiments as described in Koay et. al (2013). The Sunflower robot, developed by Kheng Lee Koay at the University of Hertfordshire, is a non-humanoid robot, using communicative signals inspired by dog-human interaction. The biological behaviors had been abstracted and translated to the specific robot embodiment. The results show that the robot is able to communicate its intention to a person and encourages the participant to attend to events and locations in a home environment. The work has been part of the of the European project LIREC (http://lirec.eu/project).

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Intrinsically elastic robots: The key to human like performance (Best Video Award)

Author  Sami Haddadin, Felix Huber, Kai Krieger, Roman Weitschat, Alin Albu-Schäffer, Sebastian Wolf, Werner Friedl, Markus Grebenstein, Florian Petit, Jens Reinecke, Roberto Lampariello

Video ID : 475

The advantages of intrinsically elastic robots on their performance are shown by the examples of the DLR LWR III and the DLR Hand Arm System.

DLR Hand Arm System: Punching holes

Author  Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon, Markus Grebenstein, Oliver Eiberger, Werner Friedl, Hannes Höppner, Dominic Lakatos, Daniel Leidner, Florian Petit, Jens Reinecke, Sebastian Wolf, Tilo Wüsthoff

Video ID : 546

The DLR Hand Arm System uses a tool to punch holes into a business card. The passive flexibility in the variable stiffness actuators (VSA) helps to keep a stable grasp during the impact and protects the hardware from damage. The movement is realized by cyclic motion control and a learning algorithm to improve the accuracy of the holes.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

IPAnema

Author  Andreas Pott

Video ID : 50

This video demonstrates a fully constrained cable-driven parallel robot with eight cables. Reference: A. Pott, H. Mütherich, W. Kraus, V. Schmidt, P. Miermeister, A. Verl: IPAnema: A family of cable-driven parallel robots for industrial applications, Mech. Mach. Sci. 12, 119-134 (2013)