View Chapter

Chapter 34 — Visual Servoing

François Chaumette, Seth Hutchinson and Peter Corke

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

IBVS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 59

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and a desired interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.2.

IBVS on a 6-DOF robot arm (2)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 60

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and a current interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.3.

IBVS on a 6- DOF robot arm (3)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 61

This video shows an IBVS on a 6-DOF robot arm with Cartesian coordinates of image points as visual features and mean interaction matrix in the control scheme. It corresponds to the results depicted in Figure 34.4.

PBVS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 62

This video shows a PBVS on a 6-DOF robot arm with (c^t_o, theta u) as visual features. It corresponds to the results depicted in Figure 34.9.

PBVS on a 6-DOF robot arm (2)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 63

This video shows a PBVS on a 6-DOF robot arm with (c*^t_c, theta u) as visual features. It corresponds to the results depicted in Figure 34.10.

2.5-D VS on a 6-DOF robot arm (1)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 64

This video shows a 2.5-D VS on a 6-DOF robot arm with (x_g, log(Z_g), theta u) as visual features. It corresponds to the results depicted in Figure 34.12.

2.5-D VS on a 6 DOF robot arm (2)

Author  Francois Chaumette, Seth Hutchinson, Peter Corke

Video ID : 65

This video shows a 2.5-D VS on a 6 DOF robot arm with (c*^t_c, x_g, theta u_z) as visual features. It corresponds to the results depicted in Figure 34.13.