View Chapter

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Dive with REMUS

Author  Woods Hole Oceanographic Institution

Video ID : 87

Travel with a REMUS 100 autonomous, underwater vehicle on a dive off the Carolina coast to study the connection between the physical processes in the ocean at the edge of the continental shelf and the things that live there. Video footage by Chris Linder. Funding by the Department of the Navy, Science & Technology; and Centers for Ocean Sciences Education Excellence (COSEE).

Underwater vehicle Nereus

Author  Woods Hole Oceanographic Institution

Video ID : 88

Nereus is the first vehicle to enable routine scientific investigation of the world's deepest ocean depths. Recently, Nereus successfully reached the deepest part of the world's ocean - the Challenger Deep in the Mariana Trench in the western Pacific Ocean.

Mariana Trench: HROV Nereus samples the Challenger Deep seafloor

Author  Woods Hole Oceanographic Institution

Video ID : 89

Date: May 31, 2009. Depth: 10,006 meters (6.2 miles). A WHOI-led team successfully brought the newly-built hybrid remotely operated vehicle (HROV) Nereus to the deepest part of the world's ocean, the Challenger Deep in the Pacific Ocean. The dive makes the unmanned Nereus the world's deepest-diving vehicle and the first vehicle to explore the Mariana Trench since 1998. To learn more visit

REMUS SharkCam: The hunter and the hunted

Author  Woods Hole Oceanographic Institution

Video ID : 90

In 2013, a team from the Oceanographic Systems Lab at the Woods Hole Oceanographic Institution took a specially equipped REMUS SharkCam underwater vehicle to Guadalupe Island in Mexico to film great white sharks in the wild. They captured more action than they bargained for.

The Icebot

Author  Woods Hole Oceanographic Institution

Video ID : 92

A team of scientists field-tests an autonomous underwater vehicle, sending it into a hole in an ice floe off the coast of Alaska ... and hoping they can get it back.

Two underwater Folaga vehicles patrolling a 3-D area

Author  Gianluca Antonelli, Alessandro Marino

Video ID : 94

This video records one of the final experiments for the European project Co3AUV ( It was conducted successfully during February 2012 in collaboration with GraalTech at the NURC (NATO Undersea Research Center) site.

Adaptive L1 depth control of a ROV

Author  Divine Maalouf, Vincent Creuze, Ahmed Chemori

Video ID : 267

This video illustrates the ability of the L1 adaptive controller to deal with parameter changes (buoyancy) and to reject disturbances (impacts, tether movements, etc.). This controller is implemented on a modified version of the AC-ROV underwater vehicle to perform depth regulation. This work was conducted at LIRMM (University Montpellier 2 / CNRS) in collaboration with Tecnalia France.

Saturation-based, nonlinear, depth-and-yaw control of an underwater vehicle

Author  Eduardo Campos-Mercado, Ahmed Chemori, Vincent Creuze, Jorge Torres-Munoz, Rogelio Lozano

Video ID : 268

This video demonstrates the robustness of a saturation-based, nonlinear controller for underwater vehicles. The performance of yaw and depth control of the L2ROV prototype is maintained, even when the buoyancy and the damping are changed. This work has been conducted by the LIRMM (University Montpellier 2, France) and the LAFMIA (CINVESTAV Mexico), in collaboration with Tecnalia France Foundation. This work has been supported by the French-Mexican PCP program and by the Region Languedoc-Roussillon.

Multi-vehicle bathymetry mission

Author  Laboratario de Sistemas e Tecnologias Subaquaticas - Porto University / The NOPTILUS project

Video ID : 323

Two LAUV vehicles perform a bathymetry mission inside Porto Harbor. This video shows the deployment, execution, and data-revision phases of the mission. NOPTILUS is funded by the European Community's Seventh Framework Programme ICT-FP.

Neptus command and control infrastructure

Author  Laboratario de Sistemas e Tecnologias Subaquaticas - Porto University

Video ID : 324

See how Neptus is used to plan, simulate, monitor and review missions performed by autonomous vehicles. Neptus, originally developed at the Underwater Systems and Technology Laboratory, is open source software available from / NOPTILUS project [NOPTILUS is funded by European Community's Seventh Framework Programme ICT-FP]