View Chapter

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Underactuated adaptive gripper using flexural buckling

Author  Gwang-Pil Jung, Je-Sung Koh, Kyu-Jin Cho

Video ID : 409

Biologically-inspired gripper. The scalable design enables the manufacture of various sizes of the gripper. Flexure buckling provides the adaptability to grip objects of various shapes. Its differential mechanism has no wires and linkages.

Flytrap-inspired bi-stable gripper

Author  Seung-Won Kim, Kyu-Jin Cho

Video ID : 410

By using carbon-fiber, reinforced prepreg (CFRP) laminate as a leaf-and-shape memory alloy (SMA) spring actuator, we developed a novel bio-inspired flytrap robot.

An octopus-bioinspired solution to movement and manipulation for soft robots

Author  Marcello Calisti, Michelle Giorelli, Guy Levy, Barbara Mazzolai, Binyamin Hochner, Cecilia Laschi, Paolo Dario

Video ID : 411

A totally soft robotic arm freely moving in water was inspired by the form and morphology of the octopus.

Landing and perching UAV

Author  Alexis L. Desbiens, Alan T. Asbeck , Mark R. Cutkosky

Video ID : 412

This UAV uses microspines to engage with asperities on the surface and has a tuned suspension to absorb impact forces.

Dynamic surface grasping with directional adhesion

Author  Elliot W. Hawkes, David L. Christensen, Eric V. Eason, Matthew A. Estrada, Matthew Heverly, Evan Hilgemann, Hao Jiang, Morgan T. Pope, Aaron Parness, Mark R. Cutkosky

Video ID : 413

This video shows applications for perching UAVs and grasping space junk.

Gravity‐independent rock‐climbing robot and a sample acquisition tool with microspine grippers

Author  Aaron Parness, Matthew Frost, Nitish Thatte, Jonathan P King, Kevin Witkoe, Moises Nevarez, Michael Garrett, Hrand Aghazarian, Brett Kennedy

Video ID : 414

NASA JPL researchers present a 250 mm diameter omni-directional anchor that uses an array of claws with suspension flexures, called microspines, designed to grip rocks on the surfaces of asteroids and comets and to grip the cliff faces and lava tubes of Mars. Part of the paper: A. Parness, M. Frost, N. Thatte, J.P. King: Gravity-independent mobility and drilling on natural rock using microspines, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 3437-3442.

Avian-inspired perching mechanism with UAV

Author  Courtney E. Doyle, Justin J. Bird, Taylor A. Isom, Jason C. Kallman, Daman F. Bareiss, David J. Dunlop, Raymond J. King, Jake J. Abbott, Mark A. Minor

Video ID : 415

This completely passive mechanism enables a quadrotor to perch using only the weight of the quadrotor to grip the perch. The method is inspired by a tendon that allows birds to sleep while perching. More details can be found in the paper C. Doyle, J. Bird, T. Isom, C. Johnson, J. Kallman, J. Simpson, R. King, J. Abbott, M. Minor: Avian-inspired passive perching mechanism for robotic rotorcraft, Proc. IEEE Conf. Intell. Robot. Syst. (IROS), San Francisco (2011), pp. 4975-4980; https://faculty.utah.edu/u0240615-Mark_A_Minor/bibliography/index.hml

A perching mechanism for micro aerial vehicles

Author  Mirko Kovač, Jürg Germann, Christoph Hürzeler, Roland Y. Siegwart, Dario Floreano

Video ID : 416

This video shows a 4.6 g perching mechanism for micro aerial vehicles (MAVs) which enables them to perch on various vertical surfaces such as tree trunks and the external walls of concrete buildings. To achieve high impact force, needles snap forward and puncture as the trigger collides with the target's surface.

Essex series robotic fish

Author  Jindong Liu, Huosheng Hu

Video ID : 431

These are Essex autonomous robotic fish tested in a public fish tank in the London Aquarium. The video was captured during preparations for unveiling the World's first autonomous robotic fish in 2006. It was reported by BBC and other news outlets. There are three motors on the tail joint. The skin is cosmetic and water flooded. The various models are labelled G6 , G8, andG9. This video shows how a "fish" detects the tank wall and other "fish" by IR sensors and changes its path to avoid collision.

Ichthus

Author  Gi-Hun Yang, Kyung-Sik Kim, Sang-Hyo Lee, Chullhee Cho, Youngsun Ryuh

Video ID : 432

This video study captures a stage in the development of a robotic fish called ‘Ichthus’ which can be used in water-quality sensing systems. The robotic fish ‘Ichthus’ has a 3-DOF serial link-mechanism for its propulsion, which was developed at KITECH.