View Chapter

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

GoQBot: Insanely fast robot caterpillar

Author  Huai-Ti Lin, Gary Leisk, Barry Trimmer

Video ID : 291

The GoQBot is a soft-bodied silicon rubber robot which uses a ballistic rolling technique powered by actuators made out of shape-memory alloy coils to move "crazy fast"; its push-off time is under 250 ms, and it spins at 300 rpm.

SpinybotII: Climbing hard walls with compliant microspines

Author  Sangbae Kim, Alan T. Asbeck, Mark R. Cutkosky, William R. Provancher

Video ID : 388

This climbing robot can scale flat, hard vertical surfaces including those made of concrete, brick, stucco and masonry without using suction or adhesives. It employs arrays of miniature spines that catch opportunistically on surface asperities. The approach is inspired by the mechanisms observed in some climbing insects and spiders.

Smooth vertical surface climbing with directional adhesion

Author  Sangbae Kim, Mark R. Cutkosky

Video ID : 389

Stickybot is a bioinspired robot that climbs smooth vertical surfaces such as those made of glass, plastic, and ceramic tile at 4 cm/s. The robot employs several design principles adapted from the gecko, including a hierarchy of compliant structures and directional adhesion. At the finest scale, the undersides of Stickybot’s toes are covered with arrays of small, angled polymer stalks.

Biologically-inspired climbing with a hexapedal robot

Author  Matthew J. Spenko, Galen C. Haynes, Jeffrey A. Saunders, Mark R. Cutkosky, Alfred A. Rizzi, Robert J. Full, Daniel E. Koditschek

Video ID : 390

A climbing robot that grasps the microtexture of the surface using special feet and special motions. The development team includes researchers from U Penn, Stanford, Berkeley, Carnegie Mellon and Boston Dynamics.

CLASH: Climbing loose vertical cloth

Author  Paul Birkmeyer, Andrew G. Gillies, Ronald S. Fearing

Video ID : 391

CLASH is a 10 cm, 15 g robot capable of climbing vertical loose-cloth surfaces at 15 cm/s. The robot has a single actuator driving its six legs which are equipped with novel passive foot mechanisms to facilitate smooth engagement and disengagement of spines. Descended from the DASH hexapedal robot, CLASH features a redesigned transmission with a lower profile and improved dynamics for climbing.

Torque-control strategies for snake robots

Author  David Rollinson, Kalyan Vasudev Alwala, Nico Zevallos, Howie Choset

Video ID : 392

This video provides an overview of some initial torque-based motions for the series elastic snake robot (SEA Snake). Because the SEA Snake has the unique ability to accurately sense and control the torque of each of its joints, it can execute life-like compliant and adaptive motions, without a complex controller or tactile sensing.

Snake robot climbs a ree

Author  Cornell Wright, Austin Buchan, Ben Brown, Jason Geist, Michael Schwerin, David Rollinson, Matthew Tesch, Howie Choset

Video ID : 393

From the Biorobotics Lab at Carnegie Mellon University, a snake robot (Snakebot) demonstrates how it can climb a tree and look around. Please keep in mind that this robot climbed a specific tree with a specific trunk width to a height about 1 meter off the ground. The researchers working to design, build and program these robots still have much work to do to get these bots to climb taller trees of various sizes and to navigate over branches and wires.

Snake robot in the water

Author  Shigeo Hirose

Video ID : 394

A snake-like robot swims in the water. Thanks to dust sealing and waterproofing, the robot can crawl on land with snake-like locomotion and sinuously swim in water. The robot is composed of compact modules with small passive wheels along the outer edges of their fins.

Salamandra robotica II robot walking and swimming

Author  Alessandro Crespi, Konstantinos Karakasiliotis, Andre Guignard, Auke Jan Ijspeert

Video ID : 395

Salamandra robotica II walking and swimming outdoors and performing the transition from swimming to walking indoors. The transition between two different locomotions and the locomotions themselves is generated by central pattern generation (CPG) and simulation of a mesencephalic locomotor region (MLR). Video from the Ecole Polytechnique Federale de Lausanne Biorobotics Lab.

ACM-R5H

Author  Shigeo Hirose

Video ID : 397

The ACM-R5H is a snake robot that can go where no human can go. It is designed to perform underwater inspections and search-and-rescue missions in hazardous environments. It is a snake-like robot with extra dust sealing, waterproofing and a rigid structure that allows operation under any severe condition. It is composed of several modules with small passive wheels that allow the robot to move smoothly on surfaces. ACM-R5 can also move sinuously in underwater environments. In the front unit, a wireless camera is mounted on a special mechanism that keeps the view orientation always horizontal. ACM-R5H is ideal for inspection and search operations in underwater environments.