View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

The WREX exoskeleton

Author  Tariq Rahman

Video ID : 499

The WREX is a spring-driven-arm exoskeleton that can provide anti-gravity support. Here, a young girl Analise puts on her WREX vest and robotic arms for the first time. Analise was born with Arthrogryposis and has been unable to move her arms and hands. Analise spent the morning being fitted for her WREX and the afternoon getting used to wearing it. Engineer Tariq Rahman and research designer Whitney Sample are the developers of the WREX (Wilmington Robotic Exoskeleton) at Alfred I. Dupon.t

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning compliant motion from human demonstration II

Author  Aude Billard

Video ID : 479

This video shows how the right amount of stiffness at joint level can be taught by human demonstration to allow the robot to strike a match. The robot starts with high stiffness. This leads the robot to break the match. By tapping gently on the joint that requires a decrease in stiffness, the teacher can convey the need for stiffness to decrease. The tapping is recorded using the force sensors available in each joint of the KUKA Light Weight Robot 4++ used for this purpose. Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .

Chapter 50 — Modeling and Control of Robots on Rough Terrain

Keiji Nagatani, Genya Ishigami and Yoshito Okada

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Mobility prediction of rovers on soft terrain

Author  Daniel Holz, Ali Azimi, Marek Teichmann, Jozsef Kavecses

Video ID : 184

This video is an animated dynamic simulation of a vehicle traveling on sandy terrain. The simulator carefully considers mechanical interactions based on relationships between the wheel and the terrain and between the tool and the terrain. In particular, a discrete-element method is employed in order to represent the tool-sand interactions.

Chapter 11 — Robots with Flexible Elements

Alessandro De Luca and Wayne J. Book

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly into two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

Cartesian impedance control with damping on

Author  Alin Albu-Schaeffer

Video ID : 134

This 2010 video shows the performance of a Cartesian impedance controller for the torque-controlled KUKA-LWR robot holding an extra payload when the damping term is active in the controller. The transient response to a contact force (a human pushing on the end-effector) is very short and free of oscillations. This is one of two coordinated videos, the other being for the case with controller damping turned off. Reference: A. Albu-Schaeffer, C. Ott, G. Hirzinger: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robot. Res. 26(1), 23-39 (2007) doi: 10.1177/0278364907073776

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Coordination of multiple mobile platforms for manipulation and transportation

Author  Tom Sugar, Vijay Kumar

Video ID : 201

Multiple robots are used to pick up and transport boxes. In each case, one robot is designated the "leader." The leader steers the group and the other robot(s) follow it, supplying force to keep the box in place.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Justin: A humanoid upper body system for two-handed manipulation experiments

Author  Christoph Borst, Christian Ott, Thomas Wimböck, Bernhard Brunner, Franziska Zacharias, Berthold Bäuml

Video ID : 626

This video presents a humanoid two-arm system developed as a research platform for studying dexterous two-handed manipulation. The system is based on the modular DLR-Lightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a 3-DOF movable torso and a visual system to form a complete humanoid upper body. The diversity of the system is demonstrated by showing the mechanical design, several control concepts, the application of rapid prototyping and hardware-in-the-loop (HIL) development, as well as two-handed manipulation experiments and the integration of path planning capabilities.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

The Icebot

Author  Woods Hole Oceanographic Institution

Video ID : 92

A team of scientists field-tests an autonomous underwater vehicle, sending it into a hole in an ice floe off the coast of Alaska ... and hoping they can get it back.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Experience-based learning of high-level task representations: Demonstration

Author  Monica Nicolescu

Video ID : 27

This is a video recorded in early 2000s, showing a Pioneer robot learning to visit a number of targets in a certain order - the human demonstration stage. The robot execution stage is also shown in a related video in this chapter. References: 1. M. Nicolescu, M.J. Mataric: Experience-based learning of task representations from human-robot interaction, Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. Banff (2001), pp. 463-468; 2. M. Nicolescu, M.J. Mataric: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybernet. A31(5), 419-430 (2001)

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Par2 robot

Author  Sébastien Krut

Video ID : 51

This video demonstrates the Par2 robot, a high-speed planar parallel robot.

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Sensor-based online trajectory generation

Author  Torsten Kröger

Video ID : 761

The video shows the movements of a position-controlled 6-DOF industrial-robot arm equipped with a distance sensor at its end-effector. The task of the robot is to draw a rectangle on the table, while the force on the table is controlled by a force controller which acts only orthogonally to the table surface. The dimensions of the rectangle are determined by the obstacles in the robot's environment. If the obstacles are moved, the distance sensor triggers the execution of a new trajectory segment which is computed within one control cycle (1 ms), so that it can be instantly executed.