View Chapter

Chapter 63 — Medical Robotics and Computer-Integrated Surgery

Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini and Paolo Dario

The growth of medical robotics since the mid- 1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robotsmay be classified in many ways: by manipulator design (e.g., kinematics, actuation); by level of autonomy (e.g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e.g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e.g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computerintegrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology ofmedical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

Da Vinci surgery on a grape

Author  Edward Hospital, Naperville, Illinois

Video ID : 823

The movie shows the peeling of a grape by using the robotic tools of the Da Vinci robot: Precision, dexterity and motion scaling are impressive.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Passive dynamic walking with knees

Author  Tad McGeer

Video ID : 527

Passive dynamic walker developed by Dr. McGeer.

Chapter 45 — World Modeling

Wolfram Burgard, Martial Hebert and Maren Bennewitz

In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topologicalmaps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-basedmaps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.

Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

OctoMap visualization

Author  Maren Bennewitz, Wolfram Burgard, Armin Hornung, Cyrill Stachniss, Kai Wurm

Video ID : 79

This video shows the Freiburg Computer Science campus in a 3-D OctoMap. Note that free space is also encoded, although not shown in the video. The map covers an area of 292 x 167 x 28 m^3 and requires only 130 MB in memory at 20 cm resolution.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

ARMin plus HandSOME robotic therapy system

Author  Peter Lum

Video ID : 497

The ARMin exoskeleton is combined with the HandSOME orthosis to enable practice of pick and place tasks with real objects. The ARMin is controlled by a joint-based guidance algorithm which enforces normal coordination between shoulder and elbow joints.

Chapter 60 — Disaster Robotics

Robin R. Murphy, Satoshi Tadokoro and Alexander Kleiner

Rescue robots have been used in at least 28 disasters in six countries since the first deployment to the 9/11 World Trade Center collapse. All types of robots have been used (land, sea, and aerial) and for all phases of a disaster (prevention, response, and recovery). This chapter will cover the basic characteristics of disasters and their impact on robotic design, and describe the robots actually used in disasters to date, with a special focus on Fukushima Daiichi, which is providing a rich proving ground for robotics. The chapter covers promising robot designs (e.g., snakes, legged locomotion) and concepts (e.g., robot teams or swarms, sensor networks), as well as progress and open issues in autonomy. The methods of evaluation in benchmarks for rescue robotics are discussed and the chapter concludes with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption.

Assistive mapping during teleoperation

Author  Alexander Kleiner, Christian Dornhege, Andreas Ciossek

Video ID : 140

This video shows a commercial mapping system that has been developed by the University of Freiburg (A. Kleiner and C. Dornhege) and the telerob GmbH (A. Ciossek) in Germany. The video first shows the physical integration of the mapping system on the telemax bomb-disposal robot. Then, the real-time output of the mapping system superimposed on the video output of the robot's camera is shown.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Grasp and multifingers-three cylindrical peg-in-hole demonstration using manipulation primitives

Author  Karl P. Kleinmann et al.

Video ID : 360

This video shows a cylindrical peg-in-hole task performed by a three-finger tendon driven robot. Manipulation primitives are used to perform the task depending on the requirements of the various assembly stages.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Pose graph compression for laser-based SLAM 2

Author  Cyrill Stachniss

Video ID : 450

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap. 46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM. Reference: Int. J. Robot. Res. 31(11), 1219-1230 (2012).

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Demonstration by visual tracking of gestures

Author  Ales Ude

Video ID : 99

Demonstration by visual tracking of gestures. Reference: A. Ude: Trajectory generation from noisy positions of object features for teaching robot paths, Robot. Auton. Syst. 11(2), 113–127 (1993); URL: http://www.cns.atr.jp/~aude/movies/ .

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Multi-robot box pushing

Author  C. Ronald Kube, Hong Zhang

Video ID : 199

Robots are used to locate an object in the environment (a box with lights on it) and push it to the desired position (an area of the environment with a light shining on it). The robots cannot communicate with each other, and the box is weighted so at least two robots have to push the box to move it. Each robot has three levels of control. First, it wanders randomly looking for the box. Second, it travels toward the box until contact is made. Third, it checks to see if the box is facing the desired direction; if so, it pushes the box, and, if not, it relocates to a different side of the box.

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Modeling articulated objects using active manipulation

Author  Juergen Strum

Video ID : 78

The video illustrates a mobile, manipulation robot that interacts with various articulated objects, such as a fridge and a dishwasher, in a kitchen environment. During interaction, the robot learns their kinematic properties such as the rotation axis and the configuration space. Knowing the kinematic model of these objects improves the performance of the robot and enables motion planning. Service robots operating in domestic environments are typically faced with a variety of objects they have to deal with to fulfill their tasks. Some of these objects are articulated such as cabinet doors and drawers, or room and garage doors. The ability to deal with such articulated objects is relevant for service robots, as, for example, they need to open doors when navigating between rooms and to open cabinets to pick up objects in fetch-and-carry applications. We developed a complete probabilistic framework that enables robots to learn the kinematic models of articulated objects from observations of their motion. We combine parametric and nonparametric models consistently and utilize the advantages of both methods. As a result of our approach, a robot can robustly operate articulated objects in unstructured environments. All software is available open-source (including documentation and tutorials) on http://www.ros.org/wiki/articulation.