View Chapter

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Exploitation of social cues to speed up learning

Author  Sylvain Calinon, Aude Billard

Video ID : 106

Use of social cues to speed up the imitation-learning process, with gazing and pointing information to select the objects relevant for the task. Reference: S. Calinon, A.G. Billard: Teaching a humanoid robot to recognize and reproduce social cues, Proc. IEEE Int. Symp. Robot Human Interactive Communication (Ro-Man), Hatfield (2006), pp. 346–351; URL: http://lasa.epfl.ch/research/control_automation/interaction/social/index.php .

Active teaching

Author  Maya Cakmak, Andrea Thomaz

Video ID : 107

Active-teaching scenario where the Simon humanoid robot asks for help during or after teaching, verifying that its understanding of the task is correct. Reference: M. Cakmak, A.L. Thomaz: Designing robot learners that ask good questions, Proc. ACM/IEEE Int. Conf. Human-Robot Interaction (HRI), Boston (2012), pp. 17–24, URL: https://www.youtube.com/user/SimonTheSocialRobot .

Learning from failure I

Author  Aude Billard

Video ID : 476

This video illustrates how learning from demonstration can be bootstrapped using failed demonstrations only (in place of traditional approaches that use successful demonstrations). The algorithm is described in detail in two publications: 1)D.-H. Grollman, A. Billard: Donut as I do: Learning from failed demonstrations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai (2011) Best Paper Award (Cognitive Robotics); 2) D.-H. Grollman, A. Billard: Robot learning from failed demonstrations, Int. J. Social Robot. 4(4), 331-342 (2012).

Learning from failure II

Author  Aude Billard

Video ID : 477

This video illustrates in a second example how learning from demonstration can benefit from failed demonstrations (as opposed to learning from successful demonstrations). Here, the robot Robota must learn how to coordinate its two arms in a timely manner for the left arm to hit the ball with the racket right on time, after the left arm sent the ball flying by hitting the catapult. More details on this work is available in: A. Rai, G. de Chambrier, A. Billard: Learning from failed demonstrations in unreliable systems, Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), Atlanta (2013), pp. 410 – 416; doi: 10.1109/HUMANOIDS.2013.7030007 .

Learning compliant motion from human demonstration

Author  Aude Billard

Video ID : 478

This video illustrates how one can teach a robot to display the right amount of stiffness to perform a task successfully. Decrease in stiffness is demonstrated by shaking the robot, while increase in stiffness is conveyed by pressing on the robot's arm (pressure being measured through tactile sensors along the robot's arm). Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .

Learning compliant motion from human demonstration II

Author  Aude Billard

Video ID : 479

This video shows how the right amount of stiffness at joint level can be taught by human demonstration to allow the robot to strike a match. The robot starts with high stiffness. This leads the robot to break the match. By tapping gently on the joint that requires a decrease in stiffness, the teacher can convey the need for stiffness to decrease. The tapping is recorded using the force sensors available in each joint of the KUKA Light Weight Robot 4++ used for this purpose. Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .