View Chapter

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Mobile robot helper - Mr. Helper

Author   Kazuhiro Kosuge, Manabu Sato, Norihide Kazamura

Video ID : 606

In this video, a mobile robot helper referred to as Mr. Helper is proposed. Mr. Helper consists of two 7-DOF manipulators and an omni-directional mobile base. The omnidirectional mobile base is the VUTON mechanism. In this system, a human and Mr. Helper communicate with each other by intentional force. That is, a human manipulates an object by applying intentional force/torque to the object. We design an impedance controller for each manipulator, so that the object manipulated by both arms has a specified impedance around a specified compliance center. Refrence: ICRA 2000 Video Abstracts.

Generation of human-care behaviors by human-interactive robot RI-MAN

Author  Masaki Onishi, Tadashi Odashima, Shinya Hirano, Kenji Tahara, Toshiharu Mukai

Video ID : 607

This video shows the the realization of environmental interactive tasks, such as human-care tasks, by replaying the human motion repeatedly. A novel motion-generation approach is shown to integrate the cognitive information into the mimicking of human motions so as to realize the final complex task by the robot. Reference: M. Onishi, Z.W. Luo, T. Odashima, S. Hirano, K. Tahara, T. Mukai: Generation of human care behaviors by human-interactive robot RI-MAN, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Rome (2007), pp. 3128-3129; doi: 10.1109/ROBOT.2007.363950.

Injury evaluation of human-robot impacts

Author  Sami Haddadin, Alin Albu-Schäffer, Michael Strohmayr, Mirko Frommberger, Gerd Hirzinger

Video ID : 608

In this video, several blunt impact tests are shown, leading to an assessment of which factors dominate injury severity. We will illustrate the effects that robot speed, robot mass, and constraints in the environment have on safety in human-robot impacts. It will be shown that the intuition about high-impact loads being transmitted by heavy robots is wrong. Furthermore, the conclusion is reached that free impacts are by far less dangerous than being crushed. Reference: S. Haddadin, A. Albu-Schäffer, M. Strohmayr, M. Frommberger, G. Hirzinger: Injury evaluation of human-robot impacts, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Pasadena (2008), pp. 2203 – 2204; doi: 10.1109/ROBOT.2008.4543534.

Safe physical human-robot collaboration

Author  Fabrizio Flacco, Alessandro De Luca

Video ID : 609

The video summarizes the state of the on-going research activities on physical human-robot collaboration (pHRC) at the DIAG Robotics Lab, Sapienza University of Rome, as of March 2013, and performed within the European Research Project FP7 287511 SAPHARI ( Reference: F. Flacco, A. De Luca: Safe physical human-robot collaboration, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Tokyo (2013)

Admittance control of a human-centered 3-DOF robotic arm using dfferential elastic actuators

Author  Marc-Antoine Legault, Marc-Antoine Lavoie, Francois Cabana, Philippe Jacob-Goudreau, Dominic Létourneau, François Michaud

Video ID : 610

This video shows the functionalities of a three-serial-DOF robotic arm where each DOF is actuated with a patent-pending differential elastic actuator (DEA). A DEA uses differential coupling between a high-impedance mechanical speed source and a low-impedance mechanical spring. A passive torsion spring (thus the name elastic), with a known impedance characteristic corresponding to the spring stiffness, is used, with an electrical DC brushless motor. A non-turning sensor connected in series with the spring measures the torque output of the actuator. Reference: M.-A. Legault, M.-A. Lavoie, F. Cabana, P. Jacob-Goudreau, D. Létourneau, F. Michaud: Admittance control of a human centered 3-DOF robotic arm using differential elastic actuators , Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Nice (2008), pp. 4143–4144; doi: 10.1109/IROS.2008.4651039.

A control strategy for human-friendly robots

Author   Jochen Heinzmann, Jon Kieffer, Alexander Zelinsky

Video ID : 611

The video shows the basic behavior of the system: A zero-gravity simulation with a Barrett Whole Arm Manipulator (WAM), a lightweight, 7-DOF robot driven by cable drives. The zero-G module applies the appropriate motor torques to counteract the gravity effects. The psychological impression is that the robot is completely passive although considerable forces are required for the gravity compensation. The robot is slowed down by friction only. In the second part of the video, the gravity constant is increased by 60%. This causes the robot to float up into a vertical configuration, as if the robot would be mounted upside down. (Video Proceedings of the Int. Conf. Robot. Autom. (ICRA), 1999)

Human-robot interactions

Author   J.Y.S. Luh, Shuyi Hu

Video ID : 613

In human-robot cooperative tasks, the robot is required to memorize different trajectories for different assignments and to automatically retrieve a proper one from them in real-time for the robot to follow when any assignment is repeated as, e.g., when carrying a rigid object jointly by a human and a robot. To start the task, the human leads the robot along a suitable trajectory and thereby achieves the desired goal. For every new task, the human is required to lead the robot. During the process, the trajectories are recorded and stored in memory as "skillful trajectories" for later use. Reference: J.Y.S. Luh, S. Hu: Interactions and motions in human-robot coordination, Proc. IEEE Int. Robot. Autom. (ICRA), Detroit (1999), Vol. 4, pp. 3171 – 3176; doi: 10.1109/ROBOT.1999.774081.

ISAC: A demonstration

Author  Kazukiko Kawamura, Sugato Bagchi, Robert Todd Pack, Pabolo Martinez

Video ID : 614

At the Intelligent Robotics Laboratory of the Center for Intelligent Systems at Vanderbilt University, the authors developed a humanoid system called the Intelligent Soft-Arm Control. ISAC was originally developed for a robotic assistance system for the physically disabled.

Smart Fur

Author  Anna Flagg, Karon MacLean

Video ID : 615

The video shows a smart-fur prototype as a new type of low-cost, low-tech touch sensor built with conductive fur, and suitable for physical and social/affective robot interaction.

Human-robot interaction planning

Author  Sven Parusel, Hannes Widmoser, Saskia Golz, Tobias Ende, Nico Blodow, Matteo Saveriano, Kai Krieger, Alexis Maldonado, Ingo Kresse, Roman Weitschat, Dongheui Lee, Michael Beetz, Sami Haddadin

Video ID : 616

The video presents the main aspects that have to be taken into consideration for joint human-robot assembly. These are: i) planning and appropriately distributing the tasks between human, robot, and collaboration; ii) a suitable interface between human and robot by visual and haptic gestures; iii) compliant and sensitive robot control in delivery, storage, hand-over, and assembly of parts; iv) collision detection and distinguishing from intended contacts during collaboration. The overall concept is presented for the exemplary assembly of a toy-train-track. (AAAI 2014, Video Competition)