View Chapter

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

UNMACA: Demining Afghanistan

Author  James P. Trevelyan

Video ID : 571

This is a high-quality video made partly with the aim of seeking funds to help complete demining projects in Afghanistan. This video has been included because researchers can see plenty of examples of realistic field conditions under which demining is being done in Afghanistan. It is essential for researchers to have an accurate appreciation of the real field conditions before considering expensive research projects. There are plenty of opportunities to see manual mine clearance. Current-generation demining machines don't work here because of the very hard and rocky ground. There is an interesting segment showing the Bamyan site. The sentiments expressed by deminers are genuine, in my experience. I have met many similarly dedicated Afghan deminers, and they are selected for their dedication, attitude to nation-building, courage, and conscientious work ethic. They are justly proud of the work they do, and their uniforms and equipment set them apart from most other Afghans and give them a real sense of respect. Note that winter rains and summer storms wash mud over mines, encasing them in what later turns to hard, cement-like soil. It is hard physical work demanding sensitive hands, care, and attention to detail. For more information see: http://school.mech.uwa.edu.au/~jamest/demining/countries/afghan/minefields-afghan.html

IED hunters

Author  James P. Trevelyan

Video ID : 572

The video shows the work of route-clearance teams in Afghanistan.   This video has been included because researchers can see plenty of examples of realistic field conditions under which explosive-ordnance clearance is being done in Afghanistan. It is essential for researchers to have an accurate appreciation of the real field conditions before considering expensive research projects. It is also essential that researchers understand how easily insurgent forces can adapt and defeat technological solutions that have cost tens of millions of dollars to develop. Read the caption below carefully and then watch the video with this in mind. Better-quality blast-protected vehicles provide the teams with more confidence to handle challenging tasks. You will also see that improvised explosive devices (IEDs) used by insurgents are typically made from the unexploded ordnance (UXO) which the demining teams are trying to remove. Between 15% (typical failure rate for high quality US-made ammunition) and 70% (old Russian-designed ammunition) fail to explode when used.   These UXOs lie in the ground in a, at best, semi-stable state, so some easily exploded accidentally at times. Insurgents collect and attempt to disarm them, then set them up with remotely operated or vehicle-triggered detonation fuses. That is why the demining teams came to be seen as legitimate targets by insurgents, because they were removing the explosive devices the insurgency needed to fight people who they regarded as legitimate enemies. Although not explicitly acknowledged in the commentary, this video also demonstrates one of the many methods used by insurgents to adapt their techniques to defeat the highly advanced technologies available to the ISAF teams. By laying multiple devices in different locations, using different triggering devices and different deployment methods, the insurgents soon learned what the ISAF teams could and could not detect.   Every blast indicated a device that was not detected in advance by the ISAF team. Every device removed by the team indicated a device that was detected. In this way, the insurgents rapidly learned how to deploy undetectable devices that maximized their destructive power.

Bozena 5 remotely-operated robot vehicle

Author  James P. Trevelyan

Video ID : 574

This is an example of several videos available on YouTube showing this Slovak-designed and -constructed machine. It shows the vehicle being used in different test areas with brief glimpses of other mine-resistant vehicles. BOZENA 5 was designed to support mine-clearance teams operating in Croatia, Serbia and Bosnia Herzegovina, removing mines left over from the civil war in the 1990s. In the areas affected by mines, one of the biggest challenges is the rapid growth of vegetation during the summer months. Bare ground can be submerged in vegetation over 1 m high after just two or three weeks. Military defensive positions were often set up on uneven ground with steep slopes which were then mined to deter attacks from other parties in the conflict. Mines were also removed from these defensive minefields and re-laid along routes used for smuggling goods and people. The smugglers would be able to charge higher prices because only they knew how to safely move along the routes. The smuggling routes (and their parent organizations) persisted long after the end of the formal conflict, complicating mine-clearance operations. That is why small, remote control vehicles like this proved to be so effective. They were highly manoeuvrable, easily transported, adaptable with different tools and equipment, and could be safely operated. The machine comes with an armored operator cabin and the whole system can be packed and deployed from a 40-foot shipping container weighing 16 tons. The greatest threat to the de-miners was from bounding fragmentation mines which typically had a lethal radius of several hundred meters. These vehicles provided a means to operate safely in areas affected by these mines. One of the major disadvantages of these machines is the destruction of surface vegetation that can lead to rapid erosion, if there is heavy rain in the weeks following mine clearance operations. Sudden heavy downpours are common in summer months. Therefore, they had to be used with considerable discretion and local knowledge.

DALMATINO

Author  James P. Trevelyan

Video ID : 575

This is another smaller, remotely-operated, mine-clearance vehicle similar in principle to the BOZENA machine described in Video 574. This video clearly shows the vegetation removal capability of these machines.

PT-400 D:Mine

Author  James P. Trevelyan

Video ID : 576

This video shows another remotely operated demining machine similar in principle to the BOZENA model (Video 574). The video shows the machine operating only on flat terrain.

DIGGER DTR Demining destroying anti-tank mines

Author  James P. Trevelyan

Video ID : 577

This is a Swiss-designed and built, remotely-controlled machine similar to Bozena, shown clearing vegetation. From the video, it seems to lack some of the versatility of Bozena. However, it is clearly able to continue working without being affected by powerful anti-tank mine explosions, even ones with shaped charges like the TMRP-1. Specifications include remote control, 8-ton weight, and deployment from a 20-ft standard shipping container.   The personnel protection shield provides only minimal protection. The more recent DIGGER D-3 ground-milling machine (https://www.youtube.com/watch?v=P154EDpRFew) avoids many of the weaknesses of the flail machine used in the earlier model and incorporates a more robust design, and it also has dust and shrapnel protection.

Remote-control heavy equipment used in debris removal at Fukushima reactor 3 (9/22/2012)

Author  James P. Trevelyan

Video ID : 578

A brief clip showing actual operation of a remote-control cutting equipment for dismantling the roof structure at one of the three ruined reactor buildings at the Fukushima Daiichi power plant.

iRobots used to examine interior of Fukushima powerplant

Author  James P. Trevelyan

Video ID : 579

Brief videos of robots in operation at the Fukushima plant, with English commentary from contemporary news sources.

iRobots inspecting interior of Fukushima powerplant

Author  James P. Trevelyan

Video ID : 580

A video timestamped April 17, 2011, with English commentary.

Robot being used to carry a vacuum-cleaner head at Fukishima powerplant

Author  James P. Trevelyan

Video ID : 581

A video apparently provided by IEEE Spectrum showing views of a robot performing simple vacuum-cleaning tasks.