View Chapter

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Deformation-based loop closure for dense RGB-D SLAM

Author  Thomas Whelan

Video ID : 439

This video shows the integration of SLAM-pose-graph optimization, spatially extended KinectFusion, and deformation-based loop closure in dense RGB-D mapping - integrating several of the capabilities discussed in Chap. 46.3.3 and Chap. 46.4, Springer Handbook of Robotics, 2nd edn (2016). Reference: T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J.J. Leonard, J. McDonald: Real-time large scale dense RGB-D SLAM with volumetric fusion, Int. J. Robot. Res. 34(4-5), 598-626 (2014).

Large-scale SLAM using the Atlas framework

Author  Michael Bosse

Video ID : 440

This video shows the operation of the Atlas framework for real-time, large-scale mapping using the MIT Killian Court data set. Atlas employed graphs of coordinate frames. Each vertex in the graph represents a local coordinate frame, and each edge represents the transformation between adjacent local coordinate frames. In each local coordinate frame, extended Kalman filter SLAM (Chap. 46.3.1, Springer Handbook of Robotics, 2nd edn 2016) is performed to make a map of the local environment and to estimate the current robot pose, along with the uncertainties of each. Each map's uncertainties were modelled with respect to its own local frame. Probabilities of entities in relation to arbitrary map-frames were generated by following a path formed by the edges between adjacent map-frames, using Dijkstra's shortest path algorithm. Loop-closing was achieved via an efficient map matching algorithm. Reference: M. Bosse, P. M. Newman, J. Leonard, S. Teller: Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework, Int. J. Robot. Res. 23(12), 1113-1139 (2004).

Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping

Author  Udo Frese

Video ID : 441

This video provides an illustration of graph-based SLAM, described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016). Reference: U. Frese: Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping, Auton. Robot. 21(2), 103–122 (2006).

Graph-based SLAM (Example 1)

Author  Giorgio Grisetti

Video ID : 442

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), performed on the campus of the University of Freiburg, Germany.

Graph-based SLAM (Example 2)

Author  Giorgio Grisetti

Video ID : 443

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), and performed in a parking garage in Stanford, CA.

Fast iterative alignment of pose graphs

Author  Edwin Olson

Video ID : 444

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the MIT Killian Court data set. Reference: E. Olson, J. Leonard, S. Teller: Fast iterative alignment of pose graphs with poor initial estimates, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Orlando (2006), pp. 2262 - 2269; doi: 10.1109/ROBOT.2006.1642040.

Hierarchical optimization for pose graphs on manifolds

Author  Giorgio Grisetti

Video ID : 445

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the HOGMAN algorithm. Reference: G. Grisetti, R. Kuemmerle, C. Stachniss, U. Frese, C. Hertzberg: Hierarchical optimization on manifolds for online 2-D and 3-D mapping, IEEE Int. Conf. Robot. Autom. (ICRA), Anchorage (2010), pp. 273-278; doi: 10.1109/ROBOT.2010.5509407.

Graph-based SLAM using TORO

Author  Cyrill Stachniss

Video ID : 446

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the TORO algorithm. Reference: G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard. A tree parameterization for efficiently computing maximum likelihood maps using gradient descent, Proc. Robot. Sci. Syst. (RSS), Atlanta (2007)

Sparse pose adjustment

Author  Kurt Konolige

Video ID : 447

This video shows an illustration of pose-graph SLAM optimization, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using sparse pose adjustment. Reference: K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent: Sparse pose adjustment for 2-D mapping, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Taipei (2010).

Pose graph compression for laser-based SLAM

Author  Cyrill Stachniss

Video ID : 449

This video illustrates pose graph compression, a technique for achieving long-term SLAM, as discussed in Chap. 46.5, Springer Handbook of Robotics, 2nd edn (2016). Reference: H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robot. Res. 31(11), 1219--1230 (2012).