View Chapter

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

DelFly II in hover

Author  David Lentink

Video ID : 493

This video shows a DelFly flapping-winged vehicle flying in hover. The vehicle flaps at approximately 14 Hz. The video was filmed at high speed and slowed down. For more information please see D. Lentink, S.R. Jongerius, N.L. Bradshaw: Flying Insects and Robots (Springer, Berlin, Heidelberg 2009).

AtlantikSolar field-trials

Author  Kostas Alexis

Video ID : 602

This video presents a small subset of the Autonomous Systems Lab (ASL) activities that took place during the ICARUS Field Trials in Marche-en-Famenne, Belgium, 8-12 September 2014. The ASL fixed-wing team went there with the solar-powered AtlantikSolar UAV and presented its advanced capabilities regarding long endurance flight, advanced estimation and control, autonomous navigation for complete coverage and its perception capabilities for search and rescue and map reconstruction. More information:;;

senseSoar UAV avionics testing

Author  Kostas Alexis

Video ID : 603

This video presents the avionics testing trial of the senseSoar solar-powered UAV.

Structural, inspection-path planning via iterative, viewpoint resampling with application to aerial robotics

Author  Kostas Alexis

Video ID : 604

This video presents experimental results relevant for the ICRA 2015 paper: A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart: Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics, IEEE Int. Conf. Robot. Autom. (ICRA), Seattle (2015), pp. 6423 - 6430; doi: 10.1109/ICRA.2015.7140101

sFly: Visual-inertial SLAM for a small helicopter in large outdoor environments

Author  Markus W. Achtelik

Video ID : 688

This video presents indicative results from the sFly project ( involving fully autonomous flights with a small helicopter, performing autonomous flights in previously unknown, large outdoor spaces. The video appears in IEEE/RSJ Conference on Intelligent Robots and Systems (IROS) 2012.

UAV stabilization, mapping and obstacle avoidance using VI-Sensor

Author  Skybotix AG

Video ID : 689

The video depicts UAV stabilization, mapping and obstacle avoidance using the Skybotix--Autonomous Systems Lab VI-Sensor - on-board and realtime. The robot is enabled with assisted teleoperation without line of sight and without the use of GPS during the ICARUS trials in Marche-En-Famenne.

Project Skye - Autonomous blimp

Author  Project Skye

Video ID : 690

Project Skye presents a novel concept combining the elegant and energy efficient flight of a blimp with the precise handling characteristics of a quadrocopter. Thanks to its symmetrical mechanical design, Skye can orient itself in any direction. With its integrated camera system, Skye resembles a hovering eye in the sky which enables applications in countless situations thanks to its long flight duration and high safety standards.

Flight stability in aerial redundant manipulators

Author  Christopher Korpela, Matko Orsag, Todd Danko, Bryan Kobe, Clayton McNeil, Robert Pisch, Paul Oh

Video ID : 693

Aerial manipulation tests conducted by the Drexel Autonomous Systems Lab.

The astounding athletic power of quadcopters

Author  Raffaello D'Andrea

Video ID : 694

In a robot lab at TEDGlobal, Raffaello D'Andrea demonstrates his flying quadcopters: Robots that think like athletes, solving physical problems with algorithms that help them learn. In a series of nifty demos, D'Andrea works with drones that play catch, balance and make decisions together -- and watch out for an I-want-this-now demo of Kinect-controlled quads.

Robots that fly ... and cooperate

Author  Vijay Kumar

Video ID : 695

In his lab at Penn, Vijay Kumar and his team build flying quadrotors, small, agile robots that swarm, sense each other and form ad hoc teams -- for construction, surveying disasters and far more.