View Chapter

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

The long-jumping robot Grillo

Author  Umberto Scarfogliero, Cesare Stefanini, Paolo Dario

Video ID : 278

This video shows some of the very first jumping prototypes plus n animation of the simulations made on the desired gait. The robot pictured here is a quadruped, 50 mm robot that weighs about 15 g. Inspired by frog locomotion, a tiny motor loads the springs connected to the hind limbs. Equipped with a 0.2 W DC motor, the robot is configured to achieve a forward speed of 1.5 m/s.

A miniature 7g jumping robot

Author  Mirko Kovac, Martin Fuchs, Andre Guignard, Jean-Christophe Zufferey, Dario Floreano

Video ID : 279

Jumping can be a very efficient mode of locomotion for small robots to overcome large obstacles and travel in rough, natural terrain. We present the development and characterization of a novel 5 cm, 7 g jumping robot. It can jump obstacles more than 27 times its own size and outperforms existing jumping robots by one order of magnitude with respect to jump height per weight and jump height per size. It employs elastic elements in a four bar linkage leg system to enable very powerful jumps and adjustments of the jumping force, take-off angle and force profile during the acceleration phase. This 2 min video includes footage of jumping desert locusts, computer aided design (CAD) animations, close ups of the jumps using high-speed imaging at 1000 frames/s and the robot moving in rough terrain.

A single-motor-actuated, miniature, steerable jumping robot

Author  Jianguo Zhao, Jing Xu, Bingtuan Gao, Ning Xi, Fernando J. Cintron, Matt W. Mutka, Li Xiao

Video ID : 280

The contents of the video are divided into three parts. The first part illustrates the individual functions of the robot such as jumping, self-righting and steering. The second part demonstrates the robot's locomotion capability in indoor environments. Scenarios such as jumping from the floor, jumping in an office and jumping over stairs are included. The third part shows the robot's locomotion capability in outdoor environments. Experiments on uneven ground, ground with small gravels and ground with grass are included.

The FLEA: Flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism

Author  Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, Kyu-Jin Cho

Video ID : 281

The FLEA: flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism. The robot was created to realize a flea-inspired catapult mechanism with shape-memory-alloy (SMA) spring actuators and a smart composite microstructure. The robot was fabricated with a weight of 1.1 g and a 2 cm body size, so that it can jump a distance of up to 30 times its body size.

Jumping-and-landing robot MOWGLI

Author  Ryuma Niiyama, Akihiko Nagakubo, Yasuo Kuniyoshi

Video ID : 285

In this research, we developed a bipedal robot with an artificial musculoskeletal system. Here, we present an approach to realize motor control of jumping and landing that exploits the synergy between control and mechanical structure. Our experimental system is a bipedal robot called MOWGLI. This video shows a jumping-onto-a-chair experiment to a height of 0.4 m. MOWGLI can reach heights of more than 50 % of its body height and can land softly. As a multiple-DOF legged robot, this performance is extremely high. Our results show a proximo-distal sequence of joint extensions during jumping despite simultaneous motor activity. In addition to the experiments with the real robot, the simulation results demonstrate the contribution of the artificial musculoskeletal system as a physical feedback loop in explosive movements.

RoACH: a 2.4 gram, untethered, crawling hexapod robot

Author  Aaron M. Hoover, Erik Steltz, Ronald S. Fearing

Video ID : 286

The robotic autonomous crawling hexapod (RoACH) is made using lightweight composites with integrated flexural hinges. It is actuated by two shape-memory-alloy wires and controlled by a PIC microprocessor. It can communicate over IrDA and run untethered for more than nine minutes on a single charge.

A new form of peristaltic locomotion in a robot

Author  Alexander Boxerbaum

Video ID : 287

This robotic concept uses a braided mesh that can be continuously deformed to create smooth waves of motion. The improvements in kinematics result in a much faster and effective motion.


Author  Sangok Seok, Cagdas Onal, Kyu-Jin Cho, Robert Wood, Daniela Rus, Sangbae Kim

Video ID : 288

Researchers built a soft-bodied robot worm that wriggles using artificial muscles and can withstand being beaten with a hammer.

Treebot: Autonomous tree climbing by tactile sensing

Author  Tin Lun Lam, Yangsheng Xu

Video ID : 289

The design of Treebot is unique: It uses a set of flexible linear actuators connecting two gripping claws to enable it to move around like an inchworm. While the back gripper holds on, the front gripper releases and the body extends forward, enabling the robot to literally feel around for a good place to grip.

Omegabot : Inchworm-inspired robot climbing

Author  Je-Sung Koh, Kyu-Jin Cho

Video ID : 290

This robot is an inchworm-inspired robot using a composite structure and a SMA spring actuator. It has gripper and steering joints so that it can climb on rough surfaces and steer as well.