View Chapter

Chapter 78 — Perceptual Robotics

Heinrich Bülthoff, Christian Wallraven and Martin A. Giese

Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.

Active in-hand object recognition

Author  Christian Wallraven

Video ID : 569

This video showcases the implementation of active object learning and recognition using the framework proposed in Browatzki et al. [1, 2]. The first phase shows the robot trying to learn the visual representation of several paper cups differing by a few key features. The robot executes a pre-programmed exploration program to look at the cup from all sides. The (very low-resolution) visual input is tracked and so-called key-frames are extracted which represent the (visual) exploration. After learning, the robot tries to recognize cups that have been placed into its hands using a similar exploration program based on visual information - due to the low-resolution input and the highly similar objects, the robot, however, fails to make the correct decision. The video then shows the second, advanced, exploration, which is based on actively seeking the view that is expected to provide maximum information about the object. For this, the robot embeds the learned visual information into a proprioceptive map indexed by the two joint angles of the hand. In this map, the robot now tries to predict the joint-angle combination that provides the most information about the object, given the current state of exploration. The implementation uses particle filtering to track a large number of object (view) hypotheses at the same time. Since the robot now uses a multisensory representation, the subsequent object-recognition trials are all correct, despite poor visual input and highly similar objects. References: [1] B Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active in-hand object recognition on a humanoid robot, IEEE Trans. Robot. 30(5), 1260-1269 (2014); [2] B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active object recognition on a humanoid robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 2021-2028.