View Chapter

Chapter 75 — Biologically Inspired Robotics

Fumiya Iida and Auke Jan Ijspeert

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

Biologically inspired robotics (or bio-inspired robotics in short) is a very broad research area because almost all robotic systems are, in one way or the other, inspired from biological systems. Therefore, there is no clear distinction between bio-inspired robots and the others, and there is no commonly agreed definition [75.1]. For example, legged robots that walk, hop, and run are usually regarded as bio-inspired robots because many biological systems rely on legged locomotion for their survival. On the other hand, many robotics researchers implement biologicalmodels ofmotion control and navigation onto wheeled platforms, which could also be regarded as bio-inspired robots [75.2].

Dynamic-rolling locomotion of GoQBot

Author  Fumiya Iida, Auke Ijspeert

Video ID : 109

This video presents dynamic-rolling locomotion of a worm-like robot GoQBot. Unlike the other conventional soft robots that are capable of only slow motions, this platform exhibits fast locomotion by exploiting the flexible deformation of the body as inspired from nature.

JenaWalker - Biped robot with biologically-inspired, bi-articular springs

Author  Fumiya Iida, Auke Ijspeertb

Video ID : 110

This video presents dynamic locomotion of a passivity-based, biped robot which contains biologically inspired bi-articular springs. The platform was developed for the purpose of understanding the roles of diverse muscle groups in human legs. A set of mechanical tension springs was incorporated to simulate muscles including bi-articular muscles which span two joints.

MIT Compass Gait Robot - Locomotion over rough terrain

Author  Fumiya Iida, Auke Ijspeert

Video ID : 111

This video shows an experiment of the MIT Compass Gait Robot for locomotion over rough terrain. This platform takes advantage of point-feet of compass-gait robots which are usually advantageous for locomotion in challenging, rough terrains. The motion controller uses a simple oscillator because of the intrinsic dynamic stability of this robot.

RobotRoach with adaptive gait-pattern variations

Author  Fumiya Iida, Auke Ijspeert

Video ID : 112

This video presents variations of adaptive-gait patterns inspired by insect locomotion. The computational models of central pattern generators were implemented on the physical platform to investigate its robustness and its flexibility of locomotion in many variations of its environment.

Salamandra Robotica II - Swimming-to-walking transition

Author  Fumiya Iida, Auke Ijspeert

Video ID : 113

This video presents the swimming-to-walking transition of a bioinspired salamander-like robot: Salamandra Robotica II. The modular configuration of this robot takes advantage of coordinated motions of motors based on the rhythmic patterns generated by CPGs. Because of the flexible coordination, the robot is able to exhibit locomotion both underwater and on the ground.

Analog Robot

Author  Fumiya Iida, Auke Ijspeert

Video ID : 242

This video presents Analog Robot that uses a biologically- inspired, visual-homing method for navigation. This robot is equipped with a set of analog circuitry for vision-based landmark navigation based on the mechanisms identified in biological systems, the so-called "snapshot model". The image registered at the start of the experiment will be used as a reference frame, and the analog circuitry finds a direction to travel by comparing it with the current frame.