View Chapter

Chapter 63 — Medical Robotics and Computer-Integrated Surgery

Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini and Paolo Dario

The growth of medical robotics since the mid- 1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robotsmay be classified in many ways: by manipulator design (e.g., kinematics, actuation); by level of autonomy (e.g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e.g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e.g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computerintegrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology ofmedical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

Da Vinci surgery on a grape

Author  Edward Hospital, Naperville, Illinois

Video ID : 823

The movie shows the peeling of a grape by using the robotic tools of the Da Vinci robot: Precision, dexterity and motion scaling are impressive.

Da Vinci Xi introduction | Engadget

Author  Intuitive Surgical

Video ID : 824

The movie shows the use and performance of the Da Vinci Xi robot, the novel generation of the Da Vinci robot which features improved flexibility.

Intuitive Surgical Da Vinci single-port robotic system

Author  Intuitive Surgical

Video ID : 825

The movie shows a single-port version of the Da Vinci robot, with several flexible tools all passing through the same access tube.

SPORT system by Titan Medical

Author  Titan Medical Inc.

Video ID : 826

Robot for single-port surgery produced by Titan Medical Inc.

Robot for single-port surgery by the University of Nebraska

Author  University of Nebraska Medical Center

Video ID : 827

Robot for single-port surgery by the University of Nebraska: The video includes an explanation of the working principle, tests, and comments by clinicians.

Magnetic and needlescopic instruments for surgical procedures

Author  Southwestern Center for Minimally Invasive Surgery, University of Texas, Dallas

Video ID : 828

Basic and complex procedures with magnetic and needlescopic instruments.

CardioArm

Author  Carnegie Mellon University, CNN

Video ID : 829

A robotic snake for heart operations: CardioArm.

Snake robot for surgery in tight spaces

Author  Vanderbilt University - Prof. Nabil Simaan

Video ID : 830

This video shows rotation about the backbone of a snake robot in order to achieve suturing in tight spaces. The work on actuation compensation for continuum robots was done by Nabil Simaan and Kai Xu. The movie shows how the robot behaves with and without actuation compensation.

IREP robot - Insertable robotic effectors in single-port surgery

Author  Columbia University

Video ID : 831

This movie shows the single-port-access surgical robot IREP. This multimedia extension accompanies the IEEE ICRA 2010 paper describing design considerations for suturing. The work was carried out by Jienan Ding, Kai Xu, Roger Goldman, and Nabil Simaan at ARMA lab in collaboration with Peter Allen and Dennis Fowler from Columbia University.

Variable stiffness manipulator based on layer jamming

Author  MIT/Samsung

Video ID : 832

A tubular, variable-stiffness structure designed for establishing a guide channel for single-port surgery. The thin-layered materials enables jamming stiffness more effectively in a very limited space.