View Chapter

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Reaching in clutter with whole-arm tactile sensing

Author  Advait Jain, Marc D. Killpack, Aaron Edsinger, Charles C. Kemp

Video ID : 674

In this video, our robot Cody attempts to reach to five different goal locations using four attempts (meaning four different base locations) for each goal. For each goal, we test our single-step, quasi-static, model-predictive controller against the performance of a baseline kinematic controller that has compliance at the joints.

Adaptive force/velocity control for opening unknown doors

Author  Yiannis Karayiannidis, Colin Smith, Francisco E. Vina, Petter Ogren, Danica Kragic

Video ID : 675

We propose a method that can open doors without prior knowledge of the door's kinematics. The method consists of a velocity controller that uses force measurements and estimates of the radial direction based on adaptive estimates of the position of the door hinge. The control action is decomposed into an estimated radial and tangential direction, following the concept of hybrid force/motion control.

Interactive perception of articulated objects

Author  Roberto Martin-Martin

Video ID : 676

Interactive perception of articulated objects with multilevel, recursive estimation based on task-specific priors.

A day in the life of Romeo and Juliet (mobile manipulators)

Author  Oussama Khatib

Video ID : 776

Arm/vehicle coordination, dynamically decoupled self motion control, useful compliant motion tasks, cooperative compliant motion and internal force control.

Flight stability in an aerial redundant manipulator

Author  Christopher Korpela, Matko Orsag, Todd Danko, Bryan Kobe, Clayton McNeil, Robert Pisch, Paul Oh

Video ID : 782

A Buoyancy envelope can be used to compensate for the inherent instability of quadrotor UAVs by decreasing drift and increasing the moment of inertia of the rotorcraft. Also, computer-aided control was implemented and tested for controlling the aerial manipulator using a motion-capture system. The closed-loop controller compensates for the disturbances due to the dynamics of the manipulator and interaction force at the end-effector in the control of the UAV.

HERMES, a humanoid experimental robot for mobile manipulation and exploration services

Author  Rainer Bischoff

Video ID : 783

Mobile robot HERMES grasps and releases a glass with tactile sensing using joint-angle, encoder values and motor currents. The robot can fill a glass with water from a bottle using vision. It can communicate with natural spoken language,and it can come to you to get your cup and take the cup to the kitchen, by planning a path and avoiding obstacles.

Task-consistent, obstacle avoidance for mobile manipulation

Author  Oliver Brock, Oussama Khatib, Sriram Viji

Video ID : 784

This robot can avoid moving obstacles with real-time path modification by using an elastic-strip framework. However, the real-time path modification can interfere with task execution. The proposed task-consistent, elastic planning method can ensure the task execution while achieving obstacle avoidance.

Handling of a single object by multiple mobile robots based on caster-like dynamics

Author  Kazuhiro Kosuge

Video ID : 785

When multiple robots are utilized for the handling of an object, the slippage between wheels and the ground is the most serious challenge for coordinating the multiple robots. A control algorithm has been developed for mobile robots, which assumes they each possess caster-like dynamics.

Rolling Justin - a platform for mobile manipulation

Author  DLR

Video ID : 786

Rolling Justin is a four-wheeled, mobile manipulator, which is a research platform that enables implementation and demonstration of sophisticated control algorithms and dexterous manipulation.

Combined mobility and manipulation - Operational space control of free-flying space robots

Author  Jeff Russakow, Stephen Rock

Video ID : 787

An environmental space is simulated in two dimensions using an air-bearing over a flat surface. The operational space-control framework enables the dynamically decoupled motion and force control of the object.