View Chapter

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

Artificial bacterial flagella

Author  Bradley J. Nelson

Video ID : 11

This video shows two swimming microrobots (named artificial bacterial flagella) which are actuated by an externally applied magnetic torque. The microrobots are made of a magnetic, nanoparticle composite. They are steered manually through polymer microtunnels.

The electromagnetic control of an untethered microrobot

Author  Bradley J. Nelson

Video ID : 12

This is a video of a computer simulation showing the electromagnetic control of an untethered microrobot for ophthalmic applications, such as targeted drug delivery and epiretinal membrane peeling.

A transversely magnetized, rod-shaped microrobot

Author  Bradley J. Nelson

Video ID : 13

This video shows a transversely magnetized, rod-shaped microrobot, named the RodBot, manipulating a polystyrene sphere of diameter 130 µm in a liquid. The RodBot rolls around its long axis on a surface and its speed and orientation are controlled by external, rotating magnetic fields. The flows generated by the RodBot are capable of lifting up the polystyrene sphere, trapping it in the vortex above the RodBot and transporting it to any predefined location in the solution.

Attogram mass delivery from a carbon nanotube

Author  Lixin Dong

Video ID : 489

This video shows the mass delivery from a carbon nanotube based on nanorobotic manipulation inside a transmission electron microscope. Copper atoms were driven out from the nanotube due to electromigration. A typical mass flow rate is around 1 atom per microsecond. Applications of this phenomenon in nanorobotic spot welding, bubbling of sphere-on-pillar optical antennas, and direct writing of 3-D metallic nanostructures have been demonstrated.

Multibeam bilateral teleoperation of holographic optical tweezers

Author  Fumihito Arai

Video ID : 490

This video shows micro-bead being trapped and moved using a multibeam bilateral teleoperation system of holographic optical tweezers accelerated by a graphics processing unit. The micro-beads follow the trajectory of each haptic device, and the forces to which the micro-beads are subjected, which are generated by Stokes drag, are measured and fed back to an operator via the haptic devices. This real-time telexistence was quantitatively evaluated based on the time response of the trapped beads and the fedback forces. The demonstration of touching red blood cells shows the effectiveness of this system for biomedical application.

High-speed magnetic microrobot actuation in a microfluidic chip by a fine V-groove surface

Author  Fumihito Arai

Video ID : 491

This video shows high-speed microrobotic actuation driven by permanent magnets in a microfluidic chip. The microrobot has a milliNewton-level output force from a permanent magnet, micrometer-level positioning accuracy, and drive speed of over 280 mm/s. The riblet surface, which is a regularly arrayed V-groove, reduces fluid friction and enables high-speed actuation. Ni- and Si-composite fabrication was employed to form the optimum riblet shape on the microrobot’s surface by wet and dry etching. The evaluation experiments show that the microrobot can be actuated at a rate of up to 90 Hz, which is more than ten times higher than that of the microrobot without a riblet.

Linear-to-rotary motion converters for three-dimensional microscopy

Author  Lixin Dong

Video ID : 492

This video shows the application of a linear-to-rotary motion converter in 3-D imaging using a scanning electron microscope. The motion converter consists of a SiGe/Si dual-chirality helical nanobelt (DCHNB). The experiment was done using nanorobotic manipulation. Analytical and experimental investigation shows that the motion conversion has excellent linearity for small deflections. The stiffness (0.033 N/m) is much smaller than that of bottom-up synthesized helical nanostructures, which is promising for high-resolution force measurement in nanoelectromechanical systems (NEMS). The ultracompact size makes it also possible for DCHNBs to serve as rotary stages for creating 3-D scanning probe microscopes or microgoniometers.