View Chapter

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

An omnidirectional mobile robot with active caster wheels

Author  Woojin Chung

Video ID : 325

This video shows a holonomic omnidirectional mobile robot with two active and two passive caster wheels. Each active caster is composed of two actuators. The first actuator drives a wheel; the second actuator steers the wheel orientation. Although the mechanical structure of the driving mechanisms becomes a little complicated, conventional tires can be used for omnidirectional motions. Since the robot is overactuated, four actuators should be carefully controlled.

Articulated robot - A robot pushing 3 passive trailers

Author  Woojin Chung

Video ID : 326

An omnidirectional robot pushes three passive trailers along a straight reference trajectory. There are no actuators in the modular passive trailers, and the trailers are connected through free joints. The backward-motion controller of the robot perceives the pose of the last trailer and the joint angles between trailers. Thus, one active robot can control an arbitrary number of trailers.

An omnidirectional robot with four mecanum wheels

Author  Nexus Automation Limited

Video ID : 327

This video shows a holonomic omnidirectional mobile robot with four mecanum wheels. The mecanum wheel is similar to the Swedish wheel. The rollers of the mecanum wheel have an axis of rotation at 45° to the axis of the wheel hub rotation. The design problem of omnidirectional robots becomes easier because the rotating axes of all wheel hubs can be placed in parallel.

An omnidirectional robot with four Swedish wheels

Author  Nexus Automation Limited

Video ID : 328

This video shows a holonomic omnidirectional mobile robot with four Swedish wheels. The wheel enables lateral motion by the use of rotating rollers. Although the structure of each wheel becomes complicated, the driving mechanisms of the wheels become simpler. Another advantage is that the footprint locations remain unchanged during omnidirectional movements.

An innovative planetary rover with extended climbing abilities

Author  Roland Siegwart

Video ID : 329

This video shows a suspension design for a prototype planetary exploration rover. In this suspension design, each wheel is equipped with independent actuators and a linkage mechanism that enables the robot to adapt its configuration to irregular ground conditions. This enables the rover to exhibit superior traction and obstacle-crossing performance compared to those with a standard suspension.