View Chapter

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

SHAKEY: Experimentation in robot learning and planning (1969)

Author  Peter Hart, Nils Nilsson

Video ID : 704

SRI's robot Shakey (built 1966-1972) was the first mobile robot that could reason about its surroundings. This 1969 movie provides a good look at how Shakey worked.

From knowledge grounding to dialogue processing

Author  Séverin Lemaignan, Rachid Alami

Video ID : 705

This 2012 video documents the entire process of perspective-aware knowledge acquisition, knowledge representation and storage, and dialogue understanding. It demonstrates several examples of the natural interaction of a human with a PR2 robot, including speech recognition and action execution.

RoboEarth final demonstrator

Author  Gajamohan Mohanarajah

Video ID : 706

This video made in 2014 summarizes the final demonstrator of the joint project RoboEarth -- A World Wide Web for robots ( The demonstrator includes four robots collaboratively working together to help patients in a hospital. These robots used their common knowledge base and infrastructure in the following ways: 1. a knowledge repository to share and learn from each others' experience, 2. a communication medium to perform collaborative tasks, and 3. a computational resource to offload some of their heavy computational load.